1
|
Zhu B, Zhang C, Wang J, Jia C, Lu T, Dai L, Chen T. Scaling Laws for Protein Folding under Confinement. J Phys Chem Lett 2024; 15:10138-10145. [PMID: 39340464 DOI: 10.1021/acs.jpclett.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Spatial confinement significantly affects protein folding. Without the confinement provided by chaperones, many proteins cannot fold correctly. However, the quantitative effect of confinement on protein folding remains elusive. In this study, we observed scaling laws between the variation in folding transition temperature and the size of confinement, (Tf - Tfbulk)/Tfbulk ∼ L-ν. The scaling exponent v is significantly influenced by both the protein's topology and folding cooperativity. Specifically, for a given protein, v can decrease as the folding cooperativity of the model increases, primarily due to the heightened sensitivity of the unfolded state energy to changes in cage size. For proteins with diverse topologies, variations in topological complexity influence scaling exponents in multiple ways. Notably, v exhibits a clear positive correlation with contact order and the proportion of nonlocal contacts, as this complexity significantly enhances the sensitivity of entropy loss in the unfolded state. Furthermore, we developed a novel scaling argument yielding 5/3 ≤ ν ≤ 10/3, consistent with the simulation results.
Collapse
Affiliation(s)
- Bin Zhu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chenxi Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Jiwei Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chuandong Jia
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, China
| |
Collapse
|
2
|
Lu J, Zhang X, Wu Y, Sheng Y, Li W, Wang W. Energy landscape remodeling mechanism of Hsp70-chaperone-accelerated protein folding. Biophys J 2021; 120:1971-1983. [PMID: 33745889 PMCID: PMC8204389 DOI: 10.1016/j.bpj.2021.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological function. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, the mechanism by which Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70-mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions in the open conformation of Hsp70 tend to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to a higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings add new, to our knowledge, insights into the general molecular mechanisms of chaperone-mediated protein folding.
Collapse
Affiliation(s)
- Jiajun Lu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyi Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yichao Wu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yuebiao Sheng
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Cheng C, Wu J, Liu G, Shi S, Chen T. Effects of Non-native Interactions on Frustrated Proteins Folding under Confinement. J Phys Chem B 2018; 122:7654-7667. [DOI: 10.1021/acs.jpcb.8b04147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jing Wu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Gaoyuan Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
4
|
Zhao Y, Dabrowski-Tumanski P, Niewieczerzal S, Sulkowska JI. The exclusive effects of chaperonin on the behavior of proteins with 52 knot. PLoS Comput Biol 2018; 14:e1005970. [PMID: 29547629 PMCID: PMC5874080 DOI: 10.1371/journal.pcbi.1005970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/28/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in vitro reversibly within the structure-based model. In particular, we identify two, topologically different folding/unfolding pathways and corroborate our results with experiment, recreating the chevron plot. We show that confinement effect of chaperonin or weak crowding greatly facilitates folding, simultaneously slowing down the unfolding process of UCHs, compared with bulk conditions. Finally, we analyze the existence of knots in the denaturated state of UCHs. The results of the work show that the crowded environment of the cell should have a positive effect on the kinetics of complex knotted proteins, especially when proteins with deeper knots are found in this family. Self-tying of knotted proteins remains a challenge both for theoreticians and experimentalist. In this work, we study the proteins with complex, the 52 knot, in a bulk and confined within a chaperonin box. We show that in our model we recreate the experimental results, identify two topologically distinct folding pathways and explain the beneficial role of confinement for complex knotted proteins. Encapsulation provides a possibility to fold via alternative pathway—folding via trefoil intermediate knot (N-terminal pathway) from entropic reason while folding via the C-terminal (direct tying) appears with the same probability. The results of this work show, how crowded environment in the real cell may enhance self-tying of proteins. The results are also the first step to the identification of possible oligomerization-prone forms of UCHs, which may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yani Zhao
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
5
|
Horowitz S, Koldewey P, Stull F, Bardwell JC. Folding while bound to chaperones. Curr Opin Struct Biol 2017; 48:1-5. [PMID: 28734135 DOI: 10.1016/j.sbi.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80208, USA.
| | - Philipp Koldewey
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - Frederick Stull
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Wang Z, Liu YF, Yan H, Tong H, Mei Z. Theoretical Investigations of the Chiral Transition of α-Amino Acid Confined in Various Sized Armchair Boron-Nitride Nanotubes. J Phys Chem A 2017; 121:1833-1840. [PMID: 28139928 DOI: 10.1021/acs.jpca.7b00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We computationally study the chiral transition process of the α-Ala molecule under confined different sizes of armchair SWBNNTs to explore the confinement effect. We find that the influence of a confinement environment (in armchair SWBNNTs) on the α-Ala molecule would lead to different reaction pathways. Meanwhile, the preferred reaction pathway is also different in various sizes of armchair SWBNNTs, and their energy barriers for the rate-limiting step decrease rapidly with the decreasing of the diameters of the nanotubes. It is obvious that significant decrease of the chiral transition energy barrier occurs compared with the isolated α-Ala molecule chirality conversion mechanism, by ∼15.6 kcal mol-1, highlighting the improvement in the activity the enantiomers of α-Ala molecule. We concluded that the confinement environment has a significant impact at the nanoscale on the enantiomer transformation process of the chiral molecule.
Collapse
Affiliation(s)
- Zuocheng Wang
- The Department of Physics, Baicheng Normal University , Baicheng 137000, P.R. China.,The Institute of Theoretical and Computational Research, Baicheng Normal University , Baicheng 137000, P.R. China
| | - Yan Fang Liu
- The Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong 266101, P.R. China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101, Shandong, P.R. China
| | - Honyan Yan
- The Institute of Theoretical and Computational Research, Baicheng Normal University , Baicheng 137000, P.R. China.,Department of Computer Science, Baicheng Normal University , Baicheng 137000, P.R. China
| | - Hua Tong
- The Department of Physics, Baicheng Normal University , Baicheng 137000, P.R. China.,The Institute of Theoretical and Computational Research, Baicheng Normal University , Baicheng 137000, P.R. China
| | - Zemin Mei
- The Institute of Theoretical and Computational Research, Baicheng Normal University , Baicheng 137000, P.R. China.,Department of Chemistry, Baicheng Normal University , Baicheng 137000, P.R. China
| |
Collapse
|
7
|
Combined effect of confinement and affinity of crowded environment on conformation switching of adenylate kinase. J Mol Model 2014; 20:2530. [DOI: 10.1007/s00894-014-2530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/12/2014] [Indexed: 01/25/2023]
|
8
|
Arviv O, Levy Y. Folding of multidomain proteins: Biophysical consequences of tethering even in apparently independent folding. Proteins 2012; 80:2780-98. [DOI: 10.1002/prot.24161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
|
9
|
Xu W, Lai Z, Oliveira RJ, Leite VBP, Wang J. Configuration-dependent diffusion dynamics of downhill and two-state protein folding. J Phys Chem B 2012; 116:5152-9. [PMID: 22497604 DOI: 10.1021/jp212132v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Configuration-dependent diffusion (CDD) is important for protein folding kinetics with small thermodynamic barriers. CDD can be even more crucial in downhill folding without thermodynamic barriers. We explored the CDD of a downhill protein (BBL), and a two-state protein (CI2). The hidden kinetic barriers due to CDD were revealed. The increased ~1 k(B)T kinetic barrier is in line with experimental value based on other fast folding proteins. Compared to that of CI2, the effective free-energy profile of BBL is found to be significantly influenced by CDD, and the kinetics are totally determined by diffusion. These findings are consistent with both earlier bulk and single-molecule fluorescence measurements. In addition, we found the temperature dependence of CDD. We also found that the ratio of folding transition temperature against optimal kinetic folding temperature can provide both a quantitative measure for the underlying landscape topography and an indicator for the possible appearance of downhill folding. Our study can help for a better understanding of the role of diffusion in protein folding dynamics.
Collapse
Affiliation(s)
- Weixin Xu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | | | | | | | | |
Collapse
|
10
|
Amano KI, Oshima H, Kinoshita M. Potential of mean force between a large solute and a biomolecular complex: A model analysis on protein flux through chaperonin system. J Chem Phys 2011; 135:185101. [DOI: 10.1063/1.3657856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Tian J, Garcia AE. Simulation Studies of Protein Folding/Unfolding Equilibrium under Polar and Nonpolar Confinement. J Am Chem Soc 2011; 133:15157-64. [DOI: 10.1021/ja2054572] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianhui Tian
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E. Garcia
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
12
|
Wang Z, Wang C, Xiu P, Qi W, Tu Y, Shen Y, Zhou R, Zhang R, Fang H. Size Dependence of Nanoscale Confinement on Chiral Transformation. Chemistry 2010; 16:6482-7. [DOI: 10.1002/chem.200903383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Yan Z, Wang J, Zhang Y, Qin M, Wang W. Nucleation process in the folding of a domain-swapped dimer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021910. [PMID: 20365598 DOI: 10.1103/physreve.81.021910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/07/2009] [Indexed: 05/29/2023]
Abstract
Nucleation processes are important for the understanding in protein dynamics. To evaluate the effect of nucleation mechanism in dimerization process, a domain-swapped dimer (Esp8) is simulated with the symmetrized Gō model and the classical Gō model. The pathways of the dimerization are analyzed with computational phi -analysis method. It is found out that some nuclei are observed in the kinetic steps of the dimeric association though the whole pathway is a process with multiple intermediate states. The key residues in the nuclei are rather similar to those observed in the monomeric folding. The differences with the monomeric cases are also discussed. These differences illustrate the effects of dimeric feature on the nucleation process. Besides, manual mutations are carried out to illustrate the importance of the interactions related to the nuclei. It is observed that the mutations in the nuclei-related interactions apparently change the dynamics while other mutations have little effect on the kinetics. All of these results outline a picture that the nucleation processes act as the fundamental steps of high-order organization of protein systems.
Collapse
Affiliation(s)
- Zhiqiang Yan
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
14
|
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 2010; 67:255-76. [PMID: 19851829 PMCID: PMC11115962 DOI: 10.1007/s00018-009-0164-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.
Collapse
Affiliation(s)
- Andrew I. Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
15
|
Zhang J, Li W, Wang J, Qin M, Wu L, Yan Z, Xu W, Zuo G, Wang W. Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life 2009; 61:627-43. [DOI: 10.1002/iub.223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Confinement effects on the kinetics and thermodynamics of protein dimerization. Proc Natl Acad Sci U S A 2009; 106:5517-22. [PMID: 19297622 DOI: 10.1073/pnas.0809649106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cell, protein complexes form by relying on specific interactions between their monomers. Excluded volume effects due to molecular crowding would lead to correlations between molecules even without specific interactions. What is the interplay of these effects in the crowded cellular environment? We study dimerization of a model homodimer when the mondimers are free and when they are tethered to each other. We consider a structured environment: Two monomers first diffuse into a cavity of size L and then fold and bind within the cavity. The folding and binding are simulated by using molecular dynamics based on a simplified topology based model. The confinement in the cell is described by an effective molecular concentration C approximately L(-3). A two-state coupled folding and binding behavior is found. We show the maximal rate of dimerization occurred at an effective molecular concentration C(op) approximately = 1 mM, which is a relevant cellular concentration. In contrast, for tethered chains the rate keeps at a plateau when C < C(op) but then decreases sharply when C > C(op). For both the free and tethered cases, the simulated variation of the rate of dimerization and thermodynamic stability with effective molecular concentration agrees well with experimental observations. In addition, a theoretical argument for the effects of confinement on dimerization is also made.
Collapse
|
17
|
Zuo G, Hu J, Fang H. Effect of the ordered water on protein folding: an off-lattice Gō-like model study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031925. [PMID: 19391989 DOI: 10.1103/physreve.79.031925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Indexed: 05/27/2023]
Abstract
Recent experiments and numerical simulations have shown that the water molecules confined on the surfaces of some substrates, including the surfaces of cellular components in tissues and cells, form icelike ordered structures. If a protein folds in an environment with those icelike ordered water molecules, its behavior may be different from that in bulk water. Here, the effect of this ordered water environment on protein folding is studied by using an off-lattice Gō-like model. It is found that the ordered water environment significantly improves the native state stability and greatly speeds up the folding rate of the proteins.
Collapse
Affiliation(s)
- Guanghong Zuo
- T-Life Research Center and Department of Physics, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
18
|
GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:42-50. [DOI: 10.1016/j.pbiomolbio.2008.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Mor A, Haran G, Levy Y. Characterization of the unfolded state of repeat proteins. HFSP JOURNAL 2008; 2:405-15. [PMID: 19436472 PMCID: PMC2633173 DOI: 10.2976/1.3021145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/20/2008] [Indexed: 11/19/2022]
Abstract
The unfolded state ensemble of proteins has been described as a structurally featureless state. While this approach is supported by the fact that many unfolded proteins follow the scaling law behavior of a random coil, there is evidence that the unfolded states of various proteins are stabilized by native or non-native interactions. Recently, the existence of extensive non-native structure was reported for a repeat protein, which resulted in a scaling law exponent that is significantly smaller than that of a random polymer [Cortajarena et al., J. Mol. Biol. 382(1), 203-212 (2008)]. It was concluded that the high compactness of this protein stems from a significant fraction of interacting PP(II) helical segments in the unfolded state. In this study, we aim at providing possible molecular understanding of this anomalous compactness of the unfolded state and to investigate its origin. Using a hierarchy of computational models, we ask whether in general the unfolded state of a repeat protein is likely to be intrinsically more compact than the unfolded state of globular proteins, or whether this phenomenon depends mostly on the occurrence of a specific sequence that promotes PP(II) conformations. Our results suggest that the formation of the PP(II) conformation is indeed essential, yet the recurring sequence of repeat proteins promotes the interactions between these PP(II) segments and the formation of non-native interactions in the unfolded state.
Collapse
Affiliation(s)
- Amit Mor
- Department of Structural Biology, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Gilad Haran
- Department of Chemical Physics, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute
of Science, Rehovot, 76100, Israel
| |
Collapse
|
20
|
Xu W, Mu Y. Ab initio folding simulation of Trpcage by replica exchange with hybrid Hamiltonian. Biophys Chem 2008; 137:116-25. [DOI: 10.1016/j.bpc.2008.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
21
|
Wu L, Zhang J, Qin M, Liu F, Wang W. Folding of proteins with an all-atom Go-model. J Chem Phys 2008; 128:235103. [PMID: 18570532 DOI: 10.1063/1.2943202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Go-like potential at a residual level has been successfully applied to the folding of proteins in many previous works. However, taking into consideration more detailed structural information in the atomic level, the definition of contacts used in these traditional Go-models may not be suitable for all-atom simulations. Here, in this work, we develop a rational definition of contacts considering the screening effect in the crowded intramolecular environment. In such a scheme, a large amount of screened atom pairs are excluded and the number of contacts is decreased compared to the case of the traditional definition. These contacts defined by such a new definition are compatible with the all-atom representation of protein structures. To verify the rationality of the new definition of contacts, the folding of proteins CI2 and SH3 is simulated by all-atom molecular dynamics simulations. A high folding cooperativity and good correlation of the simulated Phi-values with those obtained experimentally, especially for CI2, are found. This suggests that the all-atom Go-model is improved compared to the traditional Go-model. Based on the comparison of the Phi-values, the roles of side chains in the folding are discussed, and it is concluded that the side-chain structures are more important for local contacts in determining the transition state structures. Moreover, the relations between side chain and backbone orderings are also discussed.
Collapse
Affiliation(s)
- L Wu
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
22
|
Xu W, Mu Y. Polar confinement modulates solvation behavior of methane molecules. J Chem Phys 2008; 128:234506. [PMID: 18570509 DOI: 10.1063/1.2940197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polar confinement induces an amorphous solidlike state of water characterized by an orientational correlation time longer than hundreds of picoseconds and significant structural disorder. Solvation behavior of methane molecules is dramatically modulated under polar confinement. Moreover our simulations indicate that the charges equivalent to those borne by atoms of amino acids could generate an electric field which is strong enough to stimulate the phase transition of water. In our results, polar confinement is found to be more capable of aggregating hydrophobic molecules. This study raises an interesting mechanism by which the cagelike structure of the Escherichia coli chaperonin GroEL and the cochaperonin GroES complex helps protein folding.
Collapse
Affiliation(s)
- Weixin Xu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|
23
|
Zhou HX, Rivas G, Minton AP. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 2008; 37:375-97. [PMID: 18573087 DOI: 10.1146/annurev.biophys.37.032807.125817] [Citation(s) in RCA: 1594] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expected and observed effects of volume exclusion on the free energy of rigid and flexible macromolecules in crowded and confined systems, and consequent effects of crowding and confinement on macromolecular reaction rates and equilibria are summarized. Findings from relevant theoretical/simulation and experimental literature published from 2004 onward are reviewed. Additional complexity arising from the heterogeneity of local environments in biological media, and the presence of nonspecific interactions between macromolecules over and above steric repulsion, are discussed. Theoretical and experimental approaches to the characterization of crowding- and confinement-induced effects in systems approaching the complexity of living organisms are suggested.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
24
|
Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 2008; 105:8256-61. [PMID: 18550810 DOI: 10.1073/pnas.0801340105] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylation is one of the most common posttranslational modifications to occur in protein biosynthesis, yet its effect on the thermodynamics and kinetics of proteins is poorly understood. A minimalist model based on the native protein topology, in which each amino acid and sugar ring was represented by a single bead, was used to study the effect of glycosylation on protein folding. We studied in silico the folding of 63 engineered SH3 domain variants that had been glycosylated with different numbers of conjugated polysaccharide chains at different sites on the protein's surface. Thermal stabilization of the protein by the polysaccharide chains was observed in proportion to the number of attached chains. Consistent with recent experimental data, the degree of thermal stabilization depended on the position of the glycosylation sites, but only very weakly on the size of the glycans. A thermodynamic analysis showed that the origin of the enhanced protein stabilization by glycosylation is destabilization of the unfolded state rather than stabilization of the folded state. The higher free energy of the unfolded state is enthalpic in origin because the bulky polysaccharide chains force the unfolded ensemble to adopt more extended conformations by prohibiting formation of a residual structure. The thermodynamic stabilization induced by glycosylation is coupled with kinetic stabilization. The effects introduced by the glycans on the biophysical properties of proteins are likely to be relevant to other protein polymeric conjugate systems that regularly occur in the cell as posttranslational modifications or for biotechnological purposes.
Collapse
|
25
|
Javidpour L, Tabar MRR, Sahimi M. Molecular simulation of protein dynamics in nanopores. I. Stability and folding. J Chem Phys 2008; 128:115105. [PMID: 18361620 DOI: 10.1063/1.2894299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of alpha-de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature T(f) and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with T(f) decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's walls with a negative potential energy. In such pores the energetic effects dominate the entropic effects. As a result, the unfolded state is stabilized, with a folding temperature T(f) which is lower than its value in the bulk and that, compared with the bulk, the folding rate decreases. The opposite is true in the presence of a repulsive interaction potential between the proteins and the walls. Moreover, for short proteins in very tight pores with attractive walls, there exists an unfolded state with only one alpha-helical hydrogen bond and an energy nearly equal to that of the folded state. The proteins have, however, high entropies, implying that they cannot fold onto their native structure, whereas in the presence of repulsive walls the proteins do attain their native structure. There is a pronounced asymmetry between the two termini of the protein with respect to their interaction with the pore walls. The effect of a variety of factors, including the pore size and the proteins' length, as well as the temperature, is studied in detail.
Collapse
Affiliation(s)
- Leili Javidpour
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | | | | |
Collapse
|
26
|
Xu W, Yang Y, Mu Y, Nordenskiöld L. Global optimisation by replica exchange with scaled hybrid Hamiltonians. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020801947020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Wu L, Zhang J, Wang J, Li WF, Wang W. Folding behavior of ribosomal protein S6 studied by modified Gō-like model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:031914. [PMID: 17500733 DOI: 10.1103/physreve.75.031914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Indexed: 05/15/2023]
Abstract
Recent experimental and theoretical studies suggest that, although topology is the determinant factor in protein folding, especially for small single-domain proteins, energetic factors also play an important role in the folding process. The ribosomal protein S6 has been subjected to intensive studies. A radical change of the transition state in its circular permutants has been observed, which is believed to be caused by a biased distribution of contact energies. Since the simplistic topology-only Gō-like model is not able to reproduce such an observation, we modify the model by introducing variable contact energies between residues based on their physicochemical properties. The modified Gō-like model can successfully reproduce the Phi-value distributions, folding nucleus, and folding pathways of both the wild-type and circular permutants of S6. Furthermore, by comparing the results of the modified and the simplistic models, we find that the hydrophobic effect constructs the major force that balances the loop entropies. This may indicate that nature maintains the folding cooperativity of this protein by carefully arranging the location of hydrophobic residues in the sequence. Our study reveals a strategy or mechanism used by nature to get out of the dilemma when the native structure, possibly required by biological function, conflicts with folding cooperativity. Finally, the possible relationship between such a design of nature and amyloidosis is also discussed.
Collapse
Affiliation(s)
- L Wu
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, 210093 China
| | | | | | | | | |
Collapse
|
28
|
Abstract
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.
Collapse
Affiliation(s)
- Zong Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
29
|
Cheung MS, Thirumalai D. Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J Mol Biol 2006; 357:632-43. [PMID: 16427652 DOI: 10.1016/j.jmb.2005.12.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/04/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022]
Abstract
We have studied the stability and the yield of the folded WW domains in a spherical nanopore to provide insights into the changes in the folding characteristics due to interactions of the polypeptide (SP) with the walls of the pore. Using different models for the interactions between the nanopore and the polypeptide chain we have obtained results that are relevant to a broad range of experiments. (a) In the temperature and the strength of the SP-pore interaction plane (lambda), there are four "phases," namely, the unfolded state, the native state, the molten globule phase (MG), and the surface interaction-stabilized (SIS) state. The MG and SIS states are populated at moderate and large values of lambda, respectively. For a fixed pore size, the folding rates vary non-monotonically as lambda is varied with a maximum at lambda approximately 1 at which the SP-nanopore interaction is comparable to the stability of the native state. At large lambda values, the WW domain is kinetically trapped in the SIS states. Using multiple sequence alignment, we conclude that similar folding mechanism should be observed in other WW domains as well. (b) To mimic the changes in the nature of the allosterically driven SP-GroEL interactions we consider two models for the dynamic Anfinsen cage (DAC). In DAC1, the SP-cavity interaction cycles between hydrophobic (lambda>0) and hydrophilic (lambda=0) with a period tau. The yield of the native state is a maximum for an optimum value of tau=tau(OPT). At tau=tau(OPT), the largest yield of the native state is obtained when tau(H) approximately tau(P) where tau(H)(tau(P)) is the duration for which the cavity is hydrophobic (hydrophilic). Thus, in order to enhance the native state yield, the cycling rate, for a given loading rate of the GroEL nanomachine, should be maximized. In DAC2, the volume of the cavity is doubled (as happens when ATP and GroES bind to GroEL) and the SP-pore interaction simultaneously changes from hydrophobic to hydrophilic. In this case, we find greater increase in yield of the native state compared to DAC1 at all values of tau.
Collapse
Affiliation(s)
- Margaret S Cheung
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|