1
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Liu Q, Yu Y, Wei G. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Phys Chem Chem Phys 2024; 26:20068-20086. [PMID: 39007865 DOI: 10.1039/d4cp02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The involvement of p53 aggregation in cancer pathogenesis emphasizes the importance of unraveling the mechanisms underlying mutation-induced p53 destabilization. And understanding how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations is pivotal for the development of therapeutics targeting p53-aggregation-associated cancers. A recent experimental study highlights the efficacy of the proteomimetic amyloid inhibitor ADH-6 in stabilizing R248W p53 and inhibiting its aggregation in cancer cells by interacting with the p53 core domain (p53C). However, it remains mostly unclear how R248W mutation induces destabilization of p53C and how ADH-6 stabilizes this p53C mutant and inhibits its aggregation. Herein, we conducted all-atom molecular dynamics simulations of R248W p53C in the absence and presence of ADH-6, as well as that of wild-type (WT) p53C. Our simulations reveal that the R248W mutation results in a shift of helix H2 and β-hairpin S2-S2' towards the mutation site, leading to the destruction of their neighboring β-sheet structure. This further facilitates the formation of a cavity in the hydrophobic core, and reduces the stability of the β-sandwich. Importantly, two crucial aggregation-prone regions (APRs) S9 and S10 are disturbed and more exposed to solvent in R248W p53C, which is conducive to p53C aggregation. Intriguingly, ADH-6 dynamically binds to the mutation site and multiple destabilized regions in R248W p53C, partially inhibiting the shift of helix H2 and β-hairpin S2-S2', thus preventing the disruption of the β-sheets and the formation of the cavity. ADH-6 also reduces the solvent exposure of APRs S9 and S10, which disfavors the aggregation of R248W p53C. Moreover, ADH-6 can preserve the WT-like dynamical network of R248W p53C. Our study elucidates the mechanisms underlying the oncogenic R248W mutation induced p53C destabilization and the structural protection of p53C by ADH-6.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
3
|
Nicolini F, Todorovski T, Puig E, Díaz-Lobo M, Vilaseca M, García J, Andreu D, Giralt E. How Do Cancer-Related Mutations Affect the Oligomerisation State of the p53 Tetramerisation Domain? Curr Issues Mol Biol 2023; 45:4985-5004. [PMID: 37367066 DOI: 10.3390/cimb45060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tumour suppressor p53 plays a key role in the development of cancer and has therefore been widely studied in recent decades. While it is well known that p53 is biologically active as a tetramer, the tetramerisation mechanism is still not completely understood. p53 is mutated in nearly 50% of cancers, and mutations can alter the oligomeric state of the protein, having an impact on the biological function of the protein and on cell fate decisions. Here, we describe the effects of a number of representative cancer-related mutations on tetramerisation domain (TD) oligomerisation defining a peptide length that permits having a folded and structured domain, thus avoiding the effect of the flanking regions and the net charges at the N- and C-terminus. These peptides have been studied under different experimental conditions. We have applied a variety of techniques, including circular dichroism (CD), native mass spectrometry (MS) and high-field solution NMR. Native MS allows us to detect the native state of complexes maintaining the peptide complexes intact in the gas phase; the secondary and quaternary structures were analysed in solution by NMR, and the oligomeric forms were assigned by diffusion NMR experiments. A significant destabilising effect and a variable monomer population were observed for all the mutants studied.
Collapse
Affiliation(s)
- Federica Nicolini
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Todorovski
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Puig
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Yu Y, Dong X, Tang Y, Li L, Wei G. Mechanistic insight into the destabilization of p53TD tetramer by cancer-related R337H mutation: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:5199-5210. [PMID: 35166747 DOI: 10.1039/d1cp05670k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The p53 protein is a tumor suppressor crucial for cell cycle and genome integrity. In a very large proportion of human cancers, p53 is frequently inactivated by mutations located in its DNA-binding domain (DBD). Some experimental studies reported that the inherited R337H mutation located in the p53 tetramerization domain (p53TD) can also result in destabilization of the p53 protein, and consequently lead to an organism prone to cancer setup. However, the underlying R337H mutation-induced structural destabilization mechanism is not well understood. Herein, we investigate the structural stability and dynamic property of the wild type p53TD tetramer and its cancer-related R337H mutant by performing multiple microsecond molecular dynamics simulations. It is found that R337H mutation destroys the R337-D352 hydrogen bonds, weakens the F341-F341 π-π stacking interaction and the hydrophobic interaction between aliphatic hydrocarbons of R337 and M340, leading to more solvent exposure of all the hydrophobic cores, and thus disrupting the structural integrity of the tetramer. Importantly, our simulations show for the first time that R337H mutation results in unfolding of the α-helix starting from the N-terminal region (residues 335RER(H)FEM340). Consistently, community network analyses reveal that R337H mutation reduces dynamical correlation and global connectivity of p53TD tetramer, which destabilizes the structure of the p53TD tetramer. This study provides the atomistic mechanism of R337H mutation-induced destabilization of p53TD tetramer, which might be helpful for in-depth understanding of the p53 loss-of-function mechanism.
Collapse
Affiliation(s)
- Yawei Yu
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Xuewei Dong
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Le Li
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
6
|
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2021; 34:1128-1146. [PMID: 32873579 PMCID: PMC7462067 DOI: 10.1101/gad.340976.120] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Gencel-Augusto and Lozano summarize the data on p53 mutants with a functional tetramerization domain that form mixed tetramers and in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. They conclude that the DNE is mostly observed after DNA damage but fails in other contexts. The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Wei T, Liu H, Chu B, Blasco P, Liu Z, Tian R, Li DX, Li X. Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chem Biol 2021; 28:722-732.e8. [PMID: 33545070 DOI: 10.1016/j.chembiol.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - David Xiang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
8
|
Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Res 2019; 47:4843-4858. [PMID: 30892621 PMCID: PMC6511852 DOI: 10.1093/nar/gkz175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Due to multiple domains and in part intrinsically disordered regions, structural analyses of p53 remain a challenging task, particularly in complex with DNA and other macromolecules. Here, we applied a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic approach to investigate changes in secondary structure of full-length p53 induced by non-covalent interactions with DNA and poly(ADP-ribose) (PAR). To validate our approach, we confirmed a positive regulatory function of p53’s C-terminal domain (CTD) with regard to sequence-specific DNA binding and verified that the CTD mediates p53–PAR interaction. Further, we demonstrate that DNA and PAR interactions result in distinct structural changes of p53, indicating specific binding mechanisms via different domains. A time-dependent analysis of the interplay of DNA and PAR binding to p53 revealed that PAR represents p53’s preferred binding partner, which efficiently controls p53–DNA interaction. Moreover, we provide infrared spectroscopic data on PAR pointing to the absence of regular secondary structural elements. Finally, temperature-induced melting experiments via CD spectroscopy show that DNA binding stabilizes the structure of p53, while PAR binding can shift the irreversible formation of insoluble p53 aggregates to higher temperatures. In conclusion, this study provides detailed insights into the dynamic interplay of p53 binding to DNA and PAR at a formerly inaccessible molecular level.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Department of Chemistry, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Anna Stier
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
9
|
Abstract
Intrinsically disordered proteins and regions are involved in a wide range of cellular functions, and they often facilitate protein-protein interactions. Molecular recognition features (MoRFs) are segments of intrinsically disordered regions that bind to partner proteins, where binding is concomitant with a transition to a structured conformation. MoRFs facilitate translation, transport, signaling, and regulatory processes and are found across all domains of life. A popular computational tool, MoRFpred, accurately predicts MoRFs in protein sequences. MoRFpred is implemented as a user-friendly web server that is freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/ . We describe this predictor, explain how to run the web server, and show how to interpret the results it generates. We also demonstrate the utility of this web server based on two case studies, focusing on the relevance of evolutionary conservation of MoRF regions.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Russia.
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
11
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017; 56:13985-13989. [DOI: 10.1002/anie.201705194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/07/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
12
|
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 2017; 106:598-612. [PMID: 26572807 DOI: 10.1002/bip.22772] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 01/10/2023]
Abstract
Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yu Toguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
13
|
Abstract
The design of a broad-spectrum cancer drug would provide enormous clinical benefits to treat cancer patients. Most of cancerous cells have a mutation in the p53 gene that results in an inactive mutant p53 protein. For this reason, p53 is a prime target for the development of a broad-spectrum cancer drug. To provide the atomic information to rationally design a drug to recover p53 activity is the main goal of the structural studies on mutant p53. We review three mechanisms that influence p53 activity and provide information about how reactivation of mutant p53 can be achieved: stabilization of the active conformation of the DNA-binding domain of the protein, suppression of missense mutations in the DNA-binding domain by a second-site mutation, and increased transactivation.
Collapse
Affiliation(s)
- Hector Viadiu
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, D.F., Mexico,
| | | | | |
Collapse
|
14
|
Bayden AS, Yakovlev VA, Graves PR, Mikkelsen RB, Kellogg GE. Factors influencing protein tyrosine nitration--structure-based predictive models. Free Radic Biol Med 2011; 50:749-62. [PMID: 21172423 PMCID: PMC3039091 DOI: 10.1016/j.freeradbiomed.2010.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/15/2010] [Accepted: 12/10/2010] [Indexed: 01/30/2023]
Abstract
Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives).
Collapse
Affiliation(s)
- Alexander S. Bayden
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vasily A. Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul R. Graves
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ross B. Mikkelsen
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry 2010; 49:5331-9. [PMID: 20499882 PMCID: PMC2892261 DOI: 10.1021/bi100564w] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA damage responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO donors to achieve the maximum DNA damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53 but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (<200 microM), exclusively nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation, and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol(-1). Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50 microM), non-DNA-damaging and high (500 microM), DNA-damaging NO donor concentrations were shown. These results demonstrate a new posttranslational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling.
Collapse
Affiliation(s)
- Vasily A. Yakovlev
- - Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Alexander S. Bayden
- - Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Paul R. Graves
- - Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Glen E. Kellogg
- - Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Ross B. Mikkelsen
- - Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
16
|
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2:a000919. [PMID: 20516128 DOI: 10.1101/cshperspect.a000919] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Even 30 years after its discovery, the tumor suppressor protein p53 is still somewhat of an enigma. p53's intimate and multifaceted role in the cell cycle is mirrored in its equally complex structural biology that is being unraveled only slowly. Here, we discuss key structural aspects of p53 function and its inactivation by oncogenic mutations. Concerted action of folded and intrinsically disordered domains of the highly dynamic p53 protein provides binding promiscuity and specificity, allowing p53 to process a myriad of cellular signals to maintain the integrity of the human genome. Importantly, progress in elucidating the structural biology of p53 and its partner proteins has opened various avenues for structure-guided rescue of p53 function in tumors. These emerging anticancer strategies include targeting mutant-specific lesions on the surface of destabilized cancer mutants with small molecules and selective inhibition of p53's degradative pathways.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
17
|
Millau JF, Bastien N, Drouin R. P53 transcriptional activities: a general overview and some thoughts. Mutat Res 2008; 681:118-133. [PMID: 18639648 DOI: 10.1016/j.mrrev.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 05/05/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
P53 is a master transcriptional regulator controlling several main cellular pathways. Its role is to adapt gene expression programs in order to maintain cellular homeostasis and genome integrity in response to stresses. P53 is found mutated in about half of human cancers and most mutations are clustered within the DNA-binding domain of the protein resulting in altered p53 transcriptional activity. This illustrates the importance of the gene regulations achieved by p53. The aim of this review is to provide a global overview of the current understanding of p53 transcriptional activities and to discuss some ongoing questions and unresolved points about p53 transcriptional activity.
Collapse
Affiliation(s)
- Jean-François Millau
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Nathalie Bastien
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Régen Drouin
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada.
| |
Collapse
|