1
|
PV1 Protein from Plasmodium falciparum Exhibits Chaperone-Like Functions and Cooperates with Hsp100s. Int J Mol Sci 2020; 21:ijms21228616. [PMID: 33207549 PMCID: PMC7697860 DOI: 10.3390/ijms21228616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/17/2023] Open
Abstract
Plasmodium falciparum parasitophorous vacuolar protein 1 (PfPV1), a protein unique to malaria parasites, is localized in the parasitophorous vacuolar (PV) and is essential for parasite growth. Previous studies suggested that PfPV1 cooperates with the Plasmodium translocon of exported proteins (PTEX) complex to export various proteins from the PV. However, the structure and function of PfPV1 have not been determined in detail. In this study, we undertook the expression, purification, and characterization of PfPV1. The tetramer appears to be the structural unit of PfPV1. The activity of PfPV1 appears to be similar to that of molecular chaperones, and it may interact with various proteins. PfPV1 could substitute CtHsp40 in the CtHsp104, CtHsp70, and CtHsp40 protein disaggregation systems. Based on these results, we propose a model in which PfPV1 captures various PV proteins and delivers them to PTEX through a specific interaction with HSP101.
Collapse
|
2
|
Sha E, Nakamura M, Ankai K, Yamamoto YY, Oka T, Yohda M. Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells. FEBS Open Bio 2019; 9:1826-1834. [PMID: 31441240 PMCID: PMC6768103 DOI: 10.1002/2211-5463.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiquitous. To examine the structure and function of HspB1, we expressed, purified, and characterized HspB1 from Chinese hamster (Cricetulus griseus) ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We observed a monodisperse 16‐mer with an elongated sphere, but this is affected by changes in various conditions, including temperature. Under dilute conditions, CgHspB1 dissociates into small oligomers at elevated temperatures. The dissociated conformers interacted with the gel filtration column through hydrophobic interactions. In contrast, dissociation of the oligomer was not observed by small‐angle X‐ray scattering at 55 °C. The result partially coincides with the results of size exclusion chromatography, showing that dissociation did not occur at high protein concentrations. However, a significant structural change in the oligomeric conformations appears to occur between room and higher temperatures. Reflecting their status as homeotherms, mammalian sHsps are regulated by phosphorylation. A phosphorylation mimic mutant of CgHspB1 with the replacement of Ser15 to Asp exhibited relatively lower oligomer stability and greater protective ability against thermal aggregation than the wild‐type protein. The result clearly shows a correlation between oligomer dissociation and chaperone activity.
Collapse
Affiliation(s)
- Eiryo Sha
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Manami Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kazuya Ankai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Toshihiko Oka
- Department of Physics, Faculty of Science, Shizuoka University, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
3
|
Glatz A, Pilbat AM, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G, Horváth I, Vígh L, Török Z. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperones 2016; 21:327-38. [PMID: 26631139 PMCID: PMC4786532 DOI: 10.1007/s12192-015-0662-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.
Collapse
Affiliation(s)
- Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ana-Maria Pilbat
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gergely L Németh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | | | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
4
|
Xi D, Wei P, Zhang C, Lai L. The minimal α-crystallin domain of Mj Hsp16.5 is functional at non-heat-shock conditions. Proteins 2013; 82:1156-67. [DOI: 10.1002/prot.24480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Xi
- BNLMS; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| | - Ping Wei
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| | - Changsheng Zhang
- BNLMS; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Luhua Lai
- BNLMS; State Key Laboratory for Structural Chemistry of Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| |
Collapse
|
5
|
Ishida M, Tomomari T, Kanzaki T, Abe T, Oka T, Yohda M. Biochemical characterization and cooperation with co-chaperones of heat shock protein 90 from Schizosaccharomyces pombe. J Biosci Bioeng 2013; 116:444-8. [PMID: 23664927 DOI: 10.1016/j.jbiosc.2013.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The characterization of Hsp90 from the fission yeast Schizosaccharomyces pombe was performed. Hsp90 of S. pombe existed as a dimer and exhibited ATP-dependent conformational changes. It captured unfolded proteins in the ATP-free open conformation and protected them from thermal aggregation. Hsp90 of S. pombe was also able to refold thermally denatured firefly luciferase. The co-chaperones Sti1 and Aha1 bound Hsp90 and modulated its activity. Because the affinity of Sti1 was higher than that of Aha1, the effect of Sti1 appeared to dominate when both co-chaperones existed simultaneously.
Collapse
Affiliation(s)
- Mari Ishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions. Biochem Biophys Res Commun 2013; 430:1259-64. [DOI: 10.1016/j.bbrc.2012.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 11/24/2022]
|
7
|
Hanazono Y, Takeda K, Oka T, Abe T, Tomonari T, Akiyama N, Aikawa Y, Yohda M, Miki K. Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. Structure 2012; 21:220-8. [PMID: 23273429 DOI: 10.1016/j.str.2012.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/12/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Small heat shock proteins (sHsps) play a role in preventing the fatal aggregation of denatured proteins in the presence of stresses. The sHsps exist as monodisperse oligomers in their resting state. Because the hydrophobic N-terminal regions of sHsps are possible interaction sites for denatured proteins, the manner of assembly of the oligomer is critical for the activation and inactivation mechanisms. Here, we report the oligomer architecture of SpHsp16.0 from Schizosaccharomyces pombe determined with X-ray crystallography and small angle X-ray scattering. Both results indicate that eight dimers of SpHsp16.0 form an elongated sphere with 422 symmetry. The monomers show nonequivalence in the interaction with neighboring monomers and conformations of the N- and C-terminal regions. Variants for the N-terminal phenylalanine residues indicate that the oligomer formation ability is highly correlated with chaperone activity. Structural and biophysical results are discussed in terms of their possible relevance to the activation mechanism of SpHsp16.0.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Noi K, Hirai H, Hongo K, Mizobata T, Kawata Y. A potentially versatile nucleotide hydrolysis activity of group II chaperonin monomers from Thermoplasma acidophilum. Biochemistry 2009; 48:9405-15. [PMID: 19728744 DOI: 10.1021/bi900959c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to the group I chaperonins such as Escherichia coli GroEL, which facilitate protein folding, many aspects of the functional mechanism of archaeal group II chaperonins are still unclear. Here, we show that monomeric forms of archaeal group II chaperonin alpha and beta from Thermoplasma acidophilum may be purified stably and that these monomers display a strong AMPase activity in the presence of divalent ions, especially Co(2+) ion, in addition to ATPase and ADPase activities. Furthermore, other nucleoside phosphates (guanosine, cytidine, uridine, and inosine phosphates) in addition to adenine nucleotides were hydrolyzed. From analyses of the products of hydrolysis using HPLC, it was revealed that the monomeric chaperonin successively hydrolyzed the phosphoanhydride and phosphoester bonds of ATP in the order of gamma to alpha. This activity was strongly suppressed by point mutation of specific essential aspartic acid residues. Although these archaeal monomeric chaperonins did not alter the refolding of MDH, their novel versatile nucleotide hydrolysis activity might fulfill a new function. Western blot experiments demonstrated that the monomeric chaperonin subunits were also present in lysed cell extracts of T. acidophilum, and partially purified native monomer displayed Co(2+)-dependent AMPase activity.
Collapse
Affiliation(s)
- Kentaro Noi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Institute of Regenerative Medicine Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| | | | | | | | | |
Collapse
|
9
|
de Miguel N, Braun N, Bepperling A, Kriehuber T, Kastenmüller A, Buchner J, Angel SO, Haslbeck M. Structural and functional diversity in the family of small heat shock proteins from the parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1738-48. [PMID: 19699241 DOI: 10.1016/j.bbamcr.2009.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022]
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones which prevent the nonspecific aggregation of non-native proteins. Five potential sHsps exist in the parasite Toxoplasma gondii. They are located in different intracellular compartments including mitochondria and are differentially expressed during the parasite's life cycle. Here, we analyzed the structural and functional properties of all five proteins. Interestingly, this first in vitro characterization of sHsps from protists showed that all T. gondii sHsps exhibit the characteristic properties of sHsps such as oligomeric structure and chaperone activity. However, differences in their quaternary structure and in their specific chaperone properties exist. On the structural level, the T. gondii sHsps can be divided in small (12-18 subunits) and large (24-32 subunits) oligomers. Furthermore, they differ in their interaction with non-native proteins. While some bind substrates tightly, others interact more transiently. The chaperone activity of the three more mono-disperse T. gondii sHsps is regulated by temperature with a decrease in temperature leading to the activation of chaperone activity, suggesting an adaption to specific steps of the parasite's life cycle.
Collapse
Affiliation(s)
- Natalia de Miguel
- Laboratorio de Parasitologia Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|