1
|
Morrow H, Mirth CK. Timing Drosophila development through steroid hormone action. Curr Opin Genet Dev 2024; 84:102148. [PMID: 38271845 DOI: 10.1016/j.gde.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Specifically timed pulses of the moulting hormone ecdysone are necessary for developmental progression in insects, guiding development through important milestones such as larval moults, pupation and metamorphosis. It also coordinates the acquisition of cell identities, known as cell patterning, and growth in a tissue-specific manner. In the absence of ecdysone, the ecdysone receptor heterodimer Ecdysone Receptor and Ultraspiracle represses expression of target primary response genes, which become de-repressed as the ecdysone titre rises. However, ecdysone signalling elicits both repressive and activating responses in a temporal and tissue-specific manner. To understand how ecdysone achieves such specificity, this review explores the layers of gene regulation involved in stage-appropriate ecdysone responses in Drosophila fruit flies.
Collapse
Affiliation(s)
- Hannah Morrow
- School of Biological Sciences, Monash University, Clayton, Victoria 3000, Australia.
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3000, Australia
| |
Collapse
|
2
|
Sołtys K, Ożyhar A. Phase separation propensity of the intrinsically disordered AB region of human RXRβ. Cell Commun Signal 2023; 21:92. [PMID: 37143076 PMCID: PMC10157963 DOI: 10.1186/s12964-023-01113-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023] Open
Abstract
RXRβ is one of three subtypes of human retinoid X receptor (RXR), a transcription factor that belongs to the nuclear receptor superfamily. Its expression can be detected in almost all tissues. In contrast to other subtypes - RXRα and RXRγ - RXRβ has the longest and unique N-terminal sequence called the AB region, which harbors a ligand-independent activation function. In contrast to the functional properties of this sequence, the molecular properties of the AB region of human RXRβ (AB_hRXRB) have not yet been characterized. Here, we present a systematic biochemical and biophysical analysis of recombinant AB_hRXRB, along with in silico examinations, which demonstrate that AB_hRXRB exhibits properties of a coil-like intrinsically disordered region. AB_hRXRB possesses a flexible structure that is able to adopt a more ordered conformation under the influence of different environmental factors. Interestingly, AB_hRXRB promotes the formation of liquid-liquid phase separation (LLPS), a phenomenon previously observed for the AB region of another human subtype of RXR - RXRγ (AB_hRXRG). Although both AB regions seem to be similar in terms of their ability to induce phase separation, they clearly differ in the sensitivity to factors driving and regulating LLPS. This distinct LLPS response to environmental factors driven by the unique amino acid compositions of AB_hRXRB and AB_hRXRG can be significant for the specific modulation of the transcriptional activation of target genes by different subtypes of RXR. Video Abstract.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
3
|
Więch A, Tarczewska A, Ożyhar A, Orłowski M. Metal Ions Induce Liquid Condensate Formation by the F Domain of Aedes aegypti Ecdysteroid Receptor. New Perspectives of Nuclear Receptor Studies. Cells 2021; 10:cells10030571. [PMID: 33807814 PMCID: PMC7999165 DOI: 10.3390/cells10030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.
Collapse
|
4
|
Rowińska-Żyrek M, Wiȩch A, Wa Tły J, Wieczorek R, Witkowska D, Ożyhar A, Orłowski M. Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from Aedes aegypti. Inorg Chem 2019; 58:11782-11792. [PMID: 31433630 DOI: 10.1021/acs.inorgchem.9b01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reproduction of the dominant vector of Zika and dengue diseases, Aedes aegypti mosquito, is controlled by an active heterodimer complex composed of the 20-hydroxyecdysone receptor (EcR) and ultraspiracle protein. Although A. aegypti EcR shares the structural and functional organization with other nuclear receptors, its C-terminus has an additional long F domain (AaFEcR). Recently, we showed that the full length AaFEcR is intrinsically disordered with the ability to specifically bind divalent metal ions. Here, we describe the details of the exhaustive structural and thermodynamic properties of Zn2+- and Cu2+-complexes with the AaFEcR domain, based on peptide models of its two putative metal binding sites (Ac-HGPHPHPHG-NH2 and Ac-QQLTPNQQQHQQQHSQLQQVHANGS-NH2). Unexpectedly, only in the presence of increasing concentrations of Cu2+ ions, the Ac-HGPHPHPHG-NH2 peptide gained a metal ion-induced poly-l-proline type II helical structure, which is unique for members of the family of nuclear receptors.
Collapse
Affiliation(s)
| | - Anna Wiȩch
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Joanna Wa Tły
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Robert Wieczorek
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Danuta Witkowska
- Public Higher Medical Professional School in Opole , Katowicka 68 , 45-060 Opole , Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| |
Collapse
|
5
|
Więch A, Rowińska-Żyrek M, Wątły J, Czarnota A, Hołubowicz R, Szewczuk Z, Ożyhar A, Orłowski M. The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. J Steroid Biochem Mol Biol 2019; 186:42-55. [PMID: 30243841 DOI: 10.1016/j.jsbmb.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022]
Abstract
The dominant vector of dengue and Zika diseases is a female Aedes aegypti mosquito. Its reproduction is controlled by the formation of an active heterodimer complex of the 20-hydroxyecdysone receptor (EcR) and Ultraspiracle protein (Usp). Although EcR exhibits a structural and functional organization typical of nuclear receptors (NRs), the EcR C-terminus has an additional F domain (AaFEcR) that is rarely present in the NRs superfamily. The presence of F domains is evolutionarily not well conserved in the NRs. The structure-function relationship of EcR F domains in arthropods is unclear and enigmatic. To date, there have been no data concerning the structure and function of AaFEcR. Our results showed that AaFEcR belongs to a family of intrinsically disordered proteins (IDPs) and possesses putative pre-molten globule (PMG) characteristics. Unexpectedly, additional amino acid composition in silico analyses revealed the presence of short unique repeated Pro-His clusters forming an HGPHPHPHG motif, which is similar to those responsible for Zn2+ and Cu2+ binding in histidine-proline-rich glycoproteins (HPRGs). Using SEC, SV-AUC and ESI-TOF MS, we showed that the intrinsically disordered AaFEcR is able to bind metal ions and form complexes with these ions. Our studies provide new insight into the structural organization and activities of the F domains of NRs. This unique for the F domains of NRs ion-binding propensity demonstrated by the AaFEcR domain may be a part of the ecdysteroid receptor's mechanism for regulating the expression of genes encoding oxidative stress-protecting proteins.
Collapse
Affiliation(s)
- Anna Więch
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | | | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Aleksandra Czarnota
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | | | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
6
|
Wycisk K, Tarczewska A, Kaus-Drobek M, Dadlez M, Hołubowicz R, Pietras Z, Dziembowski A, Taube M, Kozak M, Orłowski M, Ożyhar A. Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure. J Steroid Biochem Mol Biol 2018; 183:167-183. [PMID: 29944921 DOI: 10.1016/j.jsbmb.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are a family of ligand-dependent transcription factors activated by lipophilic compounds. NRs share a common structure comprising three domains: a variable N-terminal domain (NTD), a highly conserved globular DNA-binding domain and a ligand-binding domain. There are numerous papers describing the molecular details of the latter two globular domains. However, very little is known about the structure-function relationship of the NTD, especially as an intrinsically disordered fragment of NRs that may influence the molecular properties and, in turn, the function of globular domains. Here, we investigated whether and how an intrinsically disordered NTD consisting of 58 amino acid residues affects the functions of the globular domains of the Ultraspiracle protein from Helicoverpa armigera (HaUsp). The role of the NTD was examined for two well-known and easily testable NR functions, i.e., interactions with specific DNA sequences and dimerization. Electrophoretic mobility shift assays showed that the intrinsically disordered NTD influences the interaction of HaUsp with specific DNA sequences, apparently by destabilization of HaUsp-DNA complexes. On the other hand, multi-angle light scattering and sedimentation velocity analytical ultracentrifugation revealed that the NTD acts as a structural element that stabilizes HaUsp homodimers. Molecular models based on small-angle X-ray scattering indicate that the intrinsically disordered NTD may exert its effects on the tested HaUsp functions by forming an unexpected scorpion-like structure, in which the NTD bends towards the ligand-binding domain in each subunit of the HaUsp homodimer. This structure may be crucial for specific NTD-dependent regulation of the functions of globular domains in NRs.
Collapse
Affiliation(s)
- Krzysztof Wycisk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
7
|
Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
This article continues a series of short comments on the paradoxes and wonders of the protein intrinsic disorder phenomenon by introducing the "stability of instability" paradox. Intrinsically disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have an exceptional ability to sustain exposure to extremely harsh environmental conditions (an illustration of the "you cannot break what is already broken" principle). Extended IDPs are known to possess extreme thermal and acid stability and are able either to keep their functionality under these extreme conditions or to rapidly regain their functionality after returning to the normal conditions. Furthermore, sturdiness of intrinsic disorder and its capability to "ignore" harsh conditions provides some interesting and important advantages to its carriers, at the molecular (e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes, biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or water bears, that use intrinsically disordered proteins to survive desiccation).
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
8
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
9
|
Belorusova A, Osz J, Petoukhov MV, Peluso-Iltis C, Kieffer B, Svergun DI, Rochel N. Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein. Biochemistry 2016; 55:1741-1748. [PMID: 26937780 DOI: 10.1021/acs.biochem.5b01122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXRs) are transcription factors with important functions in embryonic development, metabolic processes, differentiation, and apoptosis. A particular feature of RXRs is their ability to act as obligatory heterodimerization partners of class II nuclear receptors. At the same time, these receptors are also able to form homodimers that bind to direct repeat separated by one nucleotide hormone response elements. Since the discovery of RXRs, most of the studies focused on its ligand binding and DNA binding domains, while its N-terminal domain (NTD) harboring a ligand-independent activation function remained poorly characterized. Here, we investigated the solution properties of the NTD of RXRα alone and in the context of the full-length receptor using small-angle X-ray scattering and nuclear magnetic resonance spectroscopy. We report the solution structure of the full-length homodimeric RXRα on DNA and show that the NTD remains highly flexible within this complex.
Collapse
Affiliation(s)
- Anna Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Judit Osz
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Carole Peluso-Iltis
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
10
|
Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1153-66. [PMID: 24704038 DOI: 10.1016/j.bbapap.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors.
Collapse
|
11
|
Seliga J, Bielska K, Wieczorek E, Orłowski M, Niedenthal R, Ożyhar A. Multidomain sumoylation of the ecdysone receptor (EcR) from Drosophila melanogaster. J Steroid Biochem Mol Biol 2013; 138:162-73. [PMID: 23727127 DOI: 10.1016/j.jsbmb.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/05/2023]
Abstract
The 20-hydroxyecdysone receptor (EcR) is a transcription factor belonging to the nuclear receptor superfamily. Together with the ultraspiracle nuclear receptor (Usp) it coordinates critical biological processes in insects such as development and reproduction. EcR and its ligands are used in commercially available ecdysone-inducible expression systems and are considered to be artificial gene switches with potential therapeutic applications. However, the regulation of EcR action is still unclear, especially in mammals and as far as posttranslational modifications are concerned. Up until now, there has been no study on EcR sumoylation. Using bioinformatic predictors, a Ubc9 fusion-directed sumoylation system and mutagenesis experiments, we present EcR as a new target of SUMO1 and SUMO3 modification. Our research revealed that EcR undergoes isoform-specific multisumoylation. The pattern of modification remains unchanged in the presence of the ligand and the dimerization partner. The SUMO acceptor sites are located in the DNA-binding domain and the ligand-binding domain that both exhibit structural plasticity. We also demonstrated the existence of a sumoylation site in the F region and EcRA-A/B region, both revealing characteristics of intrinsically disordered regions. The consequences of modification and the resulting impact on conformation and function may be especially crucial for the disordered sequences in these two areas. The isoform-specificity of sumoylation may explain the differences in the transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Justyna Seliga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Hill RJ, Billas IML, Bonneton F, Graham LD, Lawrence MC. Ecdysone receptors: from the Ashburner model to structural biology. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:251-271. [PMID: 23072463 DOI: 10.1146/annurev-ento-120811-153610] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In 1974, Ashburner and colleagues postulated a model to explain the control of the puffing sequence on Drosophila polytene chromosomes initiated by the molting hormone 20-hydroxyecdysone. This model inspired a generation of molecular biologists to clone and characterize elements of the model, thereby providing insights into the control of gene networks by steroids, diatomic gases, and other small molecules. It led to the first cloning of the EcR subunit of the heterodimeric EcR-USP ecdysone receptor. X-ray diffraction studies of the ligand-binding domain of the receptor are elucidating the specificity of receptor-ecdysteroid interactions, the selectivity of some environmentally friendly insecticides, the evolution of the EcR-USP heterodimer, and indeed Ashburner's classical biochemical evidence for the central role of the ecdysone receptor in his model.
Collapse
Affiliation(s)
- Ronald J Hill
- CSIRO Animal, Food and Health Sciences, North Ryde, NSW 2113, Australia.
| | | | | | | | | |
Collapse
|
13
|
Schauer S, Burster T, Spindler-Barth M. N- and C-terminal degradation of ecdysteroid receptor isoforms, when transiently expressed in mammalian CHO cells, is regulated by the proteasome and cysteine and threonine proteases. INSECT MOLECULAR BIOLOGY 2012; 21:383-394. [PMID: 22568680 DOI: 10.1111/j.1365-2583.2012.01144.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcriptional activity of nuclear receptors is the result of transactivation capability and the concentration of the receptor protein. The concentration of ecdysteroid receptor (EcR) isoforms, constitutively expressed in mammalian CHO cells, is dependent on a number of factors. As shown previously, ligand binding stabilizes receptor protein concentration. In this paper, we investigate the degradation of EcR isoforms and provide evidence that N-terminal degradation is modulated by isoform-specific ubiquitination sites present in the A/B domains of EcR-A and -B1. This was demonstrated by the increase in EcR concentration by treatment with carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), an inhibitor of ubiquitin-mediated proteasomal degradation and by deletion of ubiquitination sites. In addition, EcR is degraded by the peptidyl-dipeptidase cathepsin B (CatB) and the endopeptidase cathepsin S (CatS) at the C-terminus in an isoform-specific manner, despite identical C-termini. Ubiquitin-proteasome-mediated degradation and the proteolytic action are modulated by heterodimerization with Ultraspiracle (USP). The complex regulation of receptor protein concentration offers an additional opportunity to regulate transcriptional activity in an isoform- and target cell-specific way and allows the temporal limitation of hormone action.
Collapse
Affiliation(s)
- S Schauer
- Institute of General Zoology and Endocrinology, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
14
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
15
|
Gaertner K, Chandler GT, Quattro J, Ferguson PL, Sabo-Attwood T. Identification and expression of the ecdysone receptor in the harpacticoid copepod, Amphiascus tenuiremis, in response to fipronil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:39-45. [PMID: 22000904 DOI: 10.1016/j.ecoenv.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/15/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
The marine copepod, Amphiascus tenuiremis (A. tenuiremis), is a well characterized invertebrate model for the screening and evaluation of endocrine and reproductive toxins using life-cycle assays. These tests evaluate phenotypic endpoints related to development and reproduction, which are utilized to predict population outcomes. Some of these endpoints in arthropods, including sexual maturation and molting, are controlled by the hormone ecdysone which acts through its cognate receptor, the ecdysone receptor. The purpose of this research was to obtain and characterize sequence information for the A. tenuiremis ecdysone receptor and investigate modulation of expression levels by fipronil, an insecticide that causes infertility in males and reduced egg extrusion in female copepods, and ponasterone, a natural ecdysone receptor agonist. Results show successful cloning and phylogenetic analysis of the ecdysone receptor for A. tenuiremis, providing the first genetic information for a hormone receptor in this species. Exposure of copepodites to fipronil for 1, 2, 4, 18 and 30 h caused a significant increase in ecdysone receptor transcriptional expression at 30 h compared to control unexposed animals. This work illustrates a potential mechanism whereby exposure to fipronil, and potentially other endocrine disrupting compounds, results in impacted reproduction. Furthermore, this exemplifies the potential utility of ecdysone receptor transcriptional measurement as a sensitive and rapid biomarker of ecological relevance when linked to traditional A. tenuiremis bioassays.
Collapse
Affiliation(s)
- Karin Gaertner
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
16
|
Tantos A, Han KH, Tompa P. Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 2012; 348:457-65. [PMID: 21782886 DOI: 10.1016/j.mce.2011.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022]
Abstract
Structural disorder, which enables unique modes of action often associated with molecular recognition and folding induced by a partner, is widespread in eukaryotic proteomes. Due to the ensuing advantages, such as specificity without strong binding, adaptability to multiple partners and subtle regulation by post-translational modification, structural disorder is prevalent in proteins of signaling and regulatory functions, such as membrane receptors, scaffold proteins, cytoskeletal proteins, transcription factors and nuclear hormone receptors. In this review we survey the most important aspects of structural disorder, with major focus on features and advantages pertinent to signal transduction. Our major goal is to elucidate how the functional requirements of these protein classes concur with specific functional modes disorder enables.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
17
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
18
|
Natalello A, Benetti F, Doglia SM, Legname G, Grandori R. Compact conformations of α-synuclein induced by alcohols and copper. Proteins 2011; 79:611-21. [PMID: 21120859 DOI: 10.1002/prot.22909] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The intrinsically disordered protein α-synuclein aggregates into amyloid fibrils, a process known to be implicated in several neurodegenerative states. Partially folded forms of the protein are thought to trigger the aggregation process. Here, α-synuclein conformers are characterized by analysis of the charge-state distributions observed in electrospray-ionization mass spectrometry under negative-ion mode. It is found that, even at neutral pH, a small fraction of the molecular population is in a compact conformation. Several distinct partially folded forms are then identified under conditions that promote α-synuclein aggregation, such as solutions of simple and fluorinated alcohols. Specific intermediates accumulate at increasing concentrations of ethanol, hexafluoro-2-propanol, and trifluoroethanol. Finally, extensive folding induced by Cu(2+) binding is revealed by titrations in the presence of Cu(2+)-glycine. The data confirm the existence of a single, high-affinity binding site for Cu(2+). Because accumulation of this partially folded form correlates with enhancement of fibrillation kinetics, it is likely to represent an amyloidogenic intermediate in α-synuclein conformational transitions.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
19
|
Schauer S, Callender J, Henrich VC, Spindler-Barth M. The N-terminus of ecdysteroid receptor isoforms and ultraspiracle interacts with different ecdysteroid response elements in a sequence specific manner to modulate transcriptional activity. J Steroid Biochem Mol Biol 2011; 124:84-92. [PMID: 21316451 DOI: 10.1016/j.jsbmb.2011.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/23/2022]
Abstract
The functional insect ecdysteroid receptor is comprised of two nuclear receptors, the ecdysteroid receptor (EcR) and the RXR homologue, ultraspiracle (USP), which form a heterodimer. The dimer recognizes various hormone response elements and the effect of these elements on transcriptional activity of EcR isoforms was determined in vertebrate cells transfected with EcR and USP. Only constitutive activity mediated by the core response elements was preserved after elimination of nonspecific binding sites on the DNA of the vector. The constitutive transcriptional activity was regulated in a complex manner by the N-termini of both EcR and USP, the DBD of USP and the type and number of hormone response elements (HRE). Cooperative effects at oligomeric response elements particularly DR1 depended on the type of ecdysteroid response element and the N-termini of EcR and USP. The DBD of USP abolishes or attenuates synergistic effects. The data show that in the absence of hormone, transcriptional activity is regulated in a complex manner that offers additional possibilities for ecdysteroid receptor mediated gene regulation during development.
Collapse
Affiliation(s)
- Sebastian Schauer
- Institute of General Zoology and Endocrinology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
20
|
Dziedzic-Letka A, Rymarczyk G, Kapłon TM, Górecki A, Szamborska-Gbur A, Wojtas M, Dobryszycki P, Ożyhar A. Intrinsic disorder of Drosophila melanogaster hormone receptor 38 N-terminal domain. Proteins 2010; 79:376-92. [DOI: 10.1002/prot.22887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Watanabe T, Takeuchi H, Kubo T. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects. BMC Evol Biol 2010; 10:40. [PMID: 20152013 PMCID: PMC2829036 DOI: 10.1186/1471-2148-10-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The ecdysone receptor (EcR) regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF)-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. RESULTS The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. CONCLUSIONS Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|