1
|
Masnoddin M, Ling CMWV, Yusof NA. Functional Analysis of Conserved Hypothetical Proteins from the Antarctic Bacterium, Pedobacter cryoconitis Strain BG5 Reveals Protein Cold Adaptation and Thermal Tolerance Strategies. Microorganisms 2022; 10:microorganisms10081654. [PMID: 36014072 PMCID: PMC9415557 DOI: 10.3390/microorganisms10081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pedobacter cryoconitis BG5 is an obligate psychrophilic bacterium that was first isolated on King George Island, Antarctica. Over the last 50 years, the West Antarctic, including King George Island, has been one of the most rapidly warming places on Earth, hence making it an excellent area to measure the resilience of living species in warmed areas exposed to the constantly changing environment due to climate change. This bacterium encodes a genome of approximately 5694 protein-coding genes. However, 35% of the gene models for this species are found to be hypothetical proteins (HP). In this study, three conserved HP genes of P. cryoconitis, designated pcbg5hp1, pcbg5hp2 and pcbg5hp12, were cloned and the proteins were expressed, purified and their functions and structures were evaluated. Real-time quantitative PCR analysis revealed that these genes were expressed constitutively, suggesting a potentially important role where the expression of these genes under an almost constant demand might have some regulatory functions in thermal stress tolerance. Functional analysis showed that these proteins maintained their activities at low and moderate temperatures. Meanwhile, a low citrate synthase aggregation at 43 °C in the presence of PCBG5HP1 suggested the characteristics of chaperone activity. Furthermore, our comparative structural analysis demonstrated that the HPs exhibited cold-adapted traits, most notably increased flexibility in their 3D structures compared to their counterparts. Concurrently, the presence of a disulphide bridge and aromatic clusters was attributed to PCBG5HP1’s unusual protein stability and chaperone activity. Thus, this suggested that the HPs examined in this study acquired strategies to maintain a balance between molecular stability and structural flexibility. Conclusively, this study has established the structure–function relationships of the HPs produced by P. cryoconitis and provided crucial experimental evidence indicating their importance in thermal stress response.
Collapse
Affiliation(s)
- Makdi Masnoddin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
2
|
Kanesaki Y, Ogura M. RNA-seq analysis identified glucose-responsive genes and YqfO as a global regulator in Bacillus subtilis. BMC Res Notes 2021; 14:450. [PMID: 34906218 PMCID: PMC8670212 DOI: 10.1186/s13104-021-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Objective We observed that the addition of glucose enhanced the expression of sigX and sigM, encoding extra-cytoplasmic function sigma factors in Bacillus subtilis. Several regulatory factors were identified for this phenomenon, including YqfO, CshA (RNA helicase), and YlxR (nucleoid-associated protein). Subsequently, the relationships among these regulators were analyzed. Among them, YqfO is conserved in many bacterial genomes and may function as a metal ion insertase or metal chaperone, but has been poorly characterized. Thus, to further characterize YqfO, we performed RNA sequencing (RNA-seq) analysis of YqfO in addition to CshA and YlxR. Results We first performed comparative RNA-seq to detect the glucose-responsive genes. Next, to determine the regulatory effects of YqfO in addition to CshA and YlxR, three pairs of comparative RNA-seq analyses were performed (yqfO/wt, cshA/wt, and ylxR/wt). We observed relatively large regulons (approximately 420, 780, and 180 for YqfO, CshA, and YlxR, respectively) and significant overlaps, indicating close relationships among the three regulators. This study is the first to reveal that YqfO functions as a global regulator in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05869-1.
Collapse
Affiliation(s)
- Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido Shimizu-ku, Shizuoka, 424-8610, Japan.
| |
Collapse
|
3
|
Reed CJ, Hutinet G, de Crécy-Lagard V. Comparative Genomic Analysis of the DUF34 Protein Family Suggests Role as a Metal Ion Chaperone or Insertase. Biomolecules 2021; 11:1282. [PMID: 34572495 PMCID: PMC8469502 DOI: 10.3390/biom11091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as "GTP cyclohydrolase I type 2" through electronic propagation based on one study. Here, the annotation status of this protein family was examined through a comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox, and universal stress responses.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Manan A, Bazai ZA, Fan J, Yu H, Li L. The Nif3-Family Protein YqfO03 from Pseudomonas syringae MB03 Has Multiple Nematicidal Activities against Caenorhabditis elegans and Meloidogyne incognita. Int J Mol Sci 2018; 19:ijms19123915. [PMID: 30563288 PMCID: PMC6321441 DOI: 10.3390/ijms19123915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022] Open
Abstract
The nematicidal activity of the common plant-pathogenic bacterium Pseudomonas syringae against certain nematodes has been recently identified, but little is known about its virulence factors. In the current study, predictive analysis of nematode-virulent factors in the genome of a P. syringae wild-type strain MB03 revealed a variety of factors with the potential to be pathogenic against nematodes. One of these virulence factors that was predicted with a high score, namely, YqfO03, was a protein with structural domains that are similar to the Nif3 superfamily. This protein was expressed and purified in Escherichia coli, and was investigated for nematicidal properties against the model nematode Caenorhabditis elegans and an agriculturally important pest Meloidogyne incognita. Our results showed that YqfO03 exhibits lethal activity toward C. elegans and M. incognita worms, and it also caused detrimental effects on the growth, brood size, and motility of C. elegans worms. However, C. elegans worms were able to defend themselves against YqfO03 via a physical defense response by avoiding contact with the protein. Discovery of the diverse nematicidal activities of YqfO03 provides new knowledge on the biological function of a bacterial Nif3-family protein and insight into the potential of this protein as a specific means of controlling agricultural nematode pests.
Collapse
Affiliation(s)
- Abdul Manan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Center for Advance Studies in Vaccinology and Biotechnology, University of Baluchistan, Quetta 87300, Pakistan.
| | - Zahoor Ahmad Bazai
- Department of Botany, University of Baluchistan, Quetta 87300, Pakistan.
| | - Jin Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Crystal structure of a conserved hypothetical protein MJ0927 from Methanocaldococcus jannaschii reveals a novel quaternary assembly in the Nif3 family. BIOMED RESEARCH INTERNATIONAL 2014; 2014:171263. [PMID: 25243119 PMCID: PMC4163360 DOI: 10.1155/2014/171263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
A Nif3 family protein of Methanocaldococcus jannaschii, MJ0927, is highly conserved from bacteria to humans. Although several structures of bacterial Nif3 proteins are known, no structure representing archaeal Nif3 has yet been reported. The crystal structure of Methanocaldococcus jannaschii MJ0927 was determined at 2.47 Å resolution to understand the structural differences between the bacterial and archaeal Nif3 proteins. Intriguingly, MJ0927 is found to adopt an unusual assembly comprising a trimer of dimers that forms a cage-like architecture. Electrophoretic mobility-shift assays indicate that MJ0927 binds to both single-stranded and double-stranded DNA. Structural analysis of MJ0927 reveals a positively charged region that can potentially explain its DNA-binding capability. Taken together, these data suggest that MJ0927 adopts a novel quartenary architecture that could play various DNA-binding roles in Methanocaldococcus jannaschii.
Collapse
|
6
|
Shulami S, Shenker O, Langut Y, Lavid N, Gat O, Zaide G, Zehavi A, Sonenshein AL, Shoham Y. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase. J Biol Chem 2014; 289:25957-75. [PMID: 25070894 DOI: 10.1074/jbc.m114.592873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities.
Collapse
Affiliation(s)
- Smadar Shulami
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Ofer Shenker
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Yael Langut
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Noa Lavid
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Orit Gat
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Galia Zaide
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Arie Zehavi
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yuval Shoham
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| |
Collapse
|
7
|
A possible iron delivery function of the dinuclear iron center of HcgD in [Fe]-hydrogenase cofactor biosynthesis. FEBS Lett 2014; 588:2789-93. [PMID: 24931373 DOI: 10.1016/j.febslet.2014.05.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
HcgD, a homolog of the ubiquitous Nif3-like protein family, is found in a gene cluster involved in the biosynthesis of the iron-guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase. The presented crystal structure and biochemical analyses indicated that HcgD has a dinuclear iron-center, which provides a pronounced binding site for anionic ligands. HcgD contains a stronger and a weaker bound iron; the latter being removable by chelating reagents preferentially in the oxidized state. Therefore, we propose HcgD as an iron chaperone in FeGP cofactor biosynthesis, which might also stimulate investigations on the functionally unknown but physiologically important eukaryotic Nif3-like protein family members.
Collapse
|
8
|
Kuan SM, Chen HC, Huang CH, Chang CH, Chen SC, Yang CS, Chen Y. Crystallization and preliminary X-ray diffraction analysis of the Nif3-family protein MJ0927 from Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:80-2. [PMID: 23295494 DOI: 10.1107/s1744309112049408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/01/2012] [Indexed: 11/10/2022]
Abstract
MJ0927 is a member of the Nif3 family and is widely distributed across living organisms. Although several crystal structures of Nif3 proteins have been reported, structural information on archaeal Nif3 is still limited. To understand the structural differences between bacterial and archaeal Nif3 proteins, MJ0927 from Methanocaldococcus jannaschii was purified and crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.47 Å and belonged to the orthorhombic space group C222, with unit-cell parameters a = 81.21, b = 172.94, c = 147.42 Å. Determination of this structure may provide insights into the function of MJ0927.
Collapse
Affiliation(s)
- Shu Min Kuan
- Department of Biotechnology, Hungkuang University, Taichung 433, Taiwan
| | | | | | | | | | | | | |
Collapse
|