1
|
Exploration of the Structural Asymmetry Induced by the Intrinsic Flexibility of HIV-2 Protease. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-2 protease (PR2) is a homodimer targeted by drugs in the treatment of HIV-2 infections. This dimer is often considered symmetric. However, exploration of crystallographic structures showed that the two chains of PR2 exhibit different conformations. This study presents the first analysis of the structural asymmetry of PR2 induced by its intrinsic flexibility. We followed the structural asymmetry of PR2 throughout a molecular dynamics (MD) simulation of 1 microsecond. To do so, we quantified the global and local structural asymmetries of 1001 structures extracted from the MD simulation using the root mean square deviation (RMSD) between the two chains in each structure. We then analyzed the links between global and local asymmetry and PR2 flexibility. Our results showed that the global asymmetry of PR2 evolves over time and that it is not explained by the asymmetry of only one region of PR2. We noted that the most flexible regions of PR2 are the most asymmetric regions, revealing that the structural asymmetry of a region is induced by its intrinsic flexibility. Using multivariate analysis methods, we identified six asymmetric profiles varying from structures exhibiting weak asymmetry to structures with extreme asymmetry in at least eight different regions. The analysis of transitions between the different profiles in the MD simulation showed that two consecutive structures often exhibit similar asymmetric profiles, revealing small deformations. To conclude, this study provides insights which help to better understand PR2’s structure, dynamics, and deformations.
Collapse
|
2
|
Shalit Y, Tuvi-Arad I. Side chain flexibility and the symmetry of protein homodimers. PLoS One 2020; 15:e0235863. [PMID: 32706779 PMCID: PMC7380632 DOI: 10.1371/journal.pone.0235863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023] Open
Abstract
A comprehensive analysis of crystallographic data of 565 high-resolution protein homodimers comprised of over 250,000 residues suggests that amino acids form two groups that differ in their tendency to distort or symmetrize the structure of protein homodimers. Residues of the first group tend to distort the protein homodimer and generally have long or polar side chains. These include: Lys, Gln, Glu, Arg, Asn, Met, Ser, Thr and Asp. Residues of the second group contribute to protein symmetry and are generally characterized by short or aromatic side chains. These include: Ile, Pro, His, Val, Cys, Leu, Trp, Tyr, Phe, Ala and Gly. The distributions of the continuous symmetry measures of the proteins and the continuous chirality measures of their building blocks highlight the role of side chain geometry and the interplay between entropy and symmetry in dictating the conformational flexibility of proteins.
Collapse
Affiliation(s)
- Yaffa Shalit
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
- * E-mail:
| |
Collapse
|
3
|
Triki D, Cano Contreras ME, Flatters D, Visseaux B, Descamps D, Camproux AC, Regad L. Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet. Sci Rep 2018; 8:710. [PMID: 29335428 PMCID: PMC5768731 DOI: 10.1038/s41598-017-18941-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
The HIV-2 protease (PR2) is a homodimer of 99 residues with asymmetric assembly and binding various ligands. We propose an exhaustive study of the local structural asymmetry between the two monomers of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. On average, PR2 exhibits asymmetry in 31% of its positions-i.e., exhibiting different backbone local conformations in the two monomers. This asymmetry was observed all along its structure, particularly in the elbow and flap regions. We first differentiated structural asymmetry conserved in most PR2 structures from the one specific to some PR2. Then, we explored the origin of the detected asymmetry in PR2. We localized asymmetry that could be induced by PR2's flexibility, allowing transition from the semi-open to closed conformations and the asymmetry potentially induced by ligand binding. This latter could be important for the PR2's adaptation to diverse ligands. Our results highlighted some differences between asymmetry of PR2 bound to darunavir and amprenavir that could explain their differences of affinity. This knowledge is critical for a better description of PR2's recognition and adaptation to various ligands and for a better understanding of the resistance of PR2 to most PR2 inhibitors, a major antiretroviral class.
Collapse
Affiliation(s)
- Dhoha Triki
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mario Enrique Cano Contreras
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Delphine Flatters
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Benoit Visseaux
- IAME, INSERM UMR 1137, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Diane Descamps
- IAME, INSERM UMR 1137, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne-Claude Camproux
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Leslie Regad
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
4
|
Gupta P, Durani S. Algorithm to design inhibitors using stereochemically mixed l,d polypeptides: Validation against HIV protease. Int J Biol Macromol 2015; 81:410-7. [PMID: 26279121 DOI: 10.1016/j.ijbiomac.2015.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Polypeptides have potential to be designed as drugs or inhibitors against the desired targets. In polypeptides, every chiral α-amino acid has enantiomeric structural possibility to become l or d amino acids and can be used as design monomer. Among the various possibilities, use of stereochemistry as a design tool has potential to determine both functional specificity and metabolic stability of the designed polypeptides. The polypeptides with mixed l,d amino acids are a class of peptidomimitics, an attractive drug like molecules and also less susceptible to proteolytic activities. Therefore in this study, a three step algorithm is proposed to design the polypeptides against desired drug targets. For this, all possible configurational isomers of mixed l,d polyleucine (Ac-Leu8-NHMe) structure were randomly modeled with simulated annealing molecular dynamics and the resultant library of discrete folds were scored against HIV protease as a model target. The best scored folds of mixed l,d structures were inverse optimized for sequences in situ and the resultant sequences as inhibitors were validated for conformational integrity using molecular dynamics. This study presents and validates an algorithm to design polypeptides of mixed l,d structures as drugs/inhibitors by inverse fitting them as molecular ligands against desired target.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Susheel Durani
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Swapna LS, Srikeerthana K, Srinivasan N. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. PLoS One 2012; 7:e36688. [PMID: 22629324 PMCID: PMC3358323 DOI: 10.1371/journal.pone.0036688] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/11/2012] [Indexed: 11/21/2022] Open
Abstract
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2∶1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.
Collapse
|