1
|
Mori M, Manetti F, Botta B, Tafi A. In Memory of Maurizio Botta: His Contribution to the Development of Computer-Aided Drug Design. J Chem Inf Model 2019; 59:4961-4967. [PMID: 31804073 DOI: 10.1021/acs.jcim.9b01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022 , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 Siena , Italy
| |
Collapse
|
2
|
Madia VN, Benedetti R, Barreca ML, Ngo L, Pescatori L, Messore A, Pupo G, Saccoliti F, Valente S, Mai A, Scipione L, Zheng YG, Tintori C, Botta M, Cecchetti V, Altucci L, Di Santo R, Costi R. Structure-Activity Relationships on Cinnamoyl Derivatives as Inhibitors of p300 Histone Acetyltransferase. ChemMedChem 2017; 12:1359-1368. [PMID: 28346821 DOI: 10.1002/cmdc.201700040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/17/2017] [Indexed: 11/08/2022]
Abstract
Human p300 is a polyhedric transcriptional coactivator that plays a crucial role in acetylating histones on specific lysine residues. A great deal of evidence shows that p300 is involved in several diseases, including leukemia, tumors, and viral infection. Its involvement in pleiotropic biological roles and connections to diseases provide the rationale to determine how its modulation could represent an amenable drug target. Several p300 inhibitors (i.e., histone acetyltransferase inhibitors, HATis) have been described so far, but they all suffer from low potency, lack of specificity, or low cell permeability, which thus highlights the need to find more effective inhibitors. Our cinnamoyl derivative, 2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexanone (RC56), was identified as an active and selective p300 inhibitor and was proven to be a good hit candidate to investigate the structure-activity relationship toward p300. Herein, we describe the design, synthesis, and biological evaluation of new HATis structurally related to our hit; moreover, we investigate the interactions between p300 and the best-emerged hits by means of induced-fit docking and molecular-dynamics simulations, which provided insight into the peculiar chemical features that influence their activity toward the targeted enzyme.
Collapse
Affiliation(s)
- Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Rosaria Benedetti
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy
| | - Liza Ngo
- Department of Pharmaceutical and Biochemical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Luca Pescatori
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Giovanni Pupo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Yujun George Zheng
- Department of Pharmaceutical and Biochemical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Cristina Tintori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Napoli, Italy.,Istituto di Genetica e Biofisica, IGB "Adriano Buzzati Traverso", Via P. Castellino 111, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
Francini CM, Fallacara AL, Artusi R, Mennuni L, Calgani A, Angelucci A, Schenone S, Botta M. Identification of Aminoimidazole and Aminothiazole Derivatives as Src Family Kinase Inhibitors. ChemMedChem 2015; 10:2027-41. [PMID: 26514807 DOI: 10.1002/cmdc.201500428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/11/2022]
Abstract
Src family kinases (SFKs) are a family of non-receptor tyrosine kinases (TKs) implicated in the regulation of many cellular processes. The aberrant activity of these TKs has been associated with the growth and progression of cancer. In particular, c-Src is overexpressed or hyperactivated in a variety of solid tumors and is most likely a strong promoting factor for the development of metastasis. Herein, the synthesis of new 4-aminoimidazole and 2-aminothiazole derivatives and their in vitro biological evaluation are described for their potential use as SFK inhibitors. Initially, 2-aminothiazole analogues of dasatinib and 4-aminoimidazole derivatives were synthesized and tested against the SFKs Src, Fyn, Lyn, and Yes. Five hits were identified as the most promising compounds, with Ki values in the range of 90-480 nm. A combination of molecular docking, homology modeling, and molecular dynamics were then used to investigate the possible binding mode of such compounds within the ATP binding site of the SFKs. Finally, the antiproliferative activities of the best candidates were evaluated against SH-SY5Y and K562 cell lines. Compound 3 b [2-(4-{2-methyl-6-[(5-phenylthiazol-2-yl)amino]pyrimidin-4-yl}piperazin-1-yl)ethanol] was found to be the most active inhibitor.
Collapse
Affiliation(s)
- Cinzia Maria Francini
- Medicinal Chemistry Division, Rottapharm Biotech S.r.l., Valosa di Sopra N 9 Street, 20900, Monza, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Roberto Artusi
- Medicinal Chemistry Division, Rottapharm Biotech S.r.l., Valosa di Sopra N 9 Street, 20900, Monza, Italy.
| | - Laura Mennuni
- Pharmacology and Toxicology Division, Rottapharm Biotech S.r.l., Valosa di Sopra N 9 Street, 20900, Monza, Italy
| | - Alessia Calgani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell'Aquila, Via Vetoio Coppito, 67100, L'Aquila, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell'Aquila, Via Vetoio Coppito, 67100, L'Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132, Genova, Italy.
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
4
|
Tintori C, Esposito F, Morreale F, Martini R, Tramontano E, Botta M. Investigation on the sucrose binding pocket of HIV-1 Integrase by molecular dynamics and synergy experiments. Bioorg Med Chem Lett 2015; 25:3013-6. [PMID: 26048795 DOI: 10.1016/j.bmcl.2015.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Enzymes whose catalytic activity depends on multimeric assembly are targets for inhibitors that perturb the interactions between the protein subunits such as the HIV-1 Integrase (IN). Sucrose has been recently crystallized in complex with IN revealing an allosteric binding pocket at the monomer-monomer interface. Herein, molecular dynamics were applied to theoretically test the effect of this small ligand on IN. As a result, such a compound increases the mutual free energy of binding between the two interacting monomers. Biological experiments confirmed the computational forecast.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesca Morreale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Riccardo Martini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg., Suite 333, 1900 N 12th Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
5
|
Veljkovic V, Glisic S, Muller CP, Scotch M, Branch DR, Perovic VR, Sencanski M, Veljkovic N, Colombatti A. In silico analysis suggests interaction between Ebola virus and the extracellular matrix. Front Microbiol 2015; 6:135. [PMID: 25745423 PMCID: PMC4333865 DOI: 10.3389/fmicb.2015.00135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022] Open
Abstract
The worst Ebola virus (EV) outbreak in history has hit Liberia, Sierra Leone and Guinea hardest and the trend lines in this crisis are grave, and now represents a global public health threat concern. Limited therapeutic and/or prophylactic options are available for people suffering from Ebola virus disease (EVD) and further complicate the situation. Previous studies suggested that the EV glycoprotein (GP) is the main determinant causing structural damage of endothelial cells that triggers the hemorrhagic diathesis, but molecular mechanisms underlying this phenomenon remains elusive. Using the informational spectrum method (ISM), a virtual spectroscopy method for analysis of the protein-protein interactions, the interaction of GP with endothelial extracellular matrix (ECM) was investigated. Presented results of this in silico study suggest that Elastin Microfibril Interface Located Proteins (EMILINs) are involved in interaction between GP and ECM. This finding could contribute to a better understanding of EV/endothelium interaction and its role in pathogenesis, prevention and therapy of EVD.
Collapse
Affiliation(s)
- Veljko Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade Belgrade, Serbia
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade Belgrade, Serbia
| | - Claude P Muller
- Luxembourg Institute of Health (former Centre de Recherche Public de la Santé)/Laboratoire National de Santé Luxembourg, Luxembourg
| | - Matthew Scotch
- Department of Biomedical Informatics, Arizona State University Scottsdale, AZ, USA ; Center for Environmental Security, Biodesign Institute and Security and Defense Systems Initiative, Arizona State University Tempe, AZ, USA
| | - Donald R Branch
- Canadian Blood Services, Center for Innovation Toronto, ON, Canada
| | - Vladimir R Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade Belgrade, Serbia
| | - Milan Sencanski
- Innovation Center of the Faculty of Chemistry, University of Belgrade Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade Belgrade, Serbia
| | - Alfonso Colombatti
- Divisione di Oncologia Sperimentale, Centro di Riferimento Oncologico CRO-IRCCS Aviano, Italy
| |
Collapse
|
6
|
Veljkovic V, Loiseau PM, Figadere B, Glisic S, Veljkovic N, Perovic VR, Cavanaugh DP, Branch DR. Virtual screen for repurposing approved and experimental drugs for candidate inhibitors of EBOLA virus infection. F1000Res 2015; 4:34. [PMID: 25717373 PMCID: PMC4329668 DOI: 10.12688/f1000research.6110.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 01/20/2023] Open
Abstract
The ongoing Ebola virus epidemic has presented numerous challenges with respect to control and treatment because there are no approved drugs or vaccines for the Ebola virus disease (EVD). Herein is proposed simple theoretical criterion for fast virtual screening of molecular libraries for candidate inhibitors of Ebola virus infection. We performed a repurposing screen of 6438 drugs from DrugBank using this criterion and selected 267 approved and 382 experimental drugs as candidates for treatment of EVD including 15 anti-malarial drugs and 32 antibiotics. An open source Web server allowing screening of molecular libraries for candidate drugs for treatment of EVD was also established.
Collapse
Affiliation(s)
- Veljko Veljkovic
- Center for Multidisciplinary Research, University of Belgrade, Institute of Nuclear Sciences VINCA, P.O. Box 522, 11001 Belgrade, Serbia
| | - Philippe M Loiseau
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290- Chatenay-Malabry, France
| | - Bruno Figadere
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290- Chatenay-Malabry, France
| | - Sanja Glisic
- Center for Multidisciplinary Research, University of Belgrade, Institute of Nuclear Sciences VINCA, P.O. Box 522, 11001 Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, University of Belgrade, Institute of Nuclear Sciences VINCA, P.O. Box 522, 11001 Belgrade, Serbia
| | - Vladimir R Perovic
- Center for Multidisciplinary Research, University of Belgrade, Institute of Nuclear Sciences VINCA, P.O. Box 522, 11001 Belgrade, Serbia
| | | | - Donald R Branch
- Canadian Blood Services, Center for Innovation, 67 College Street, Toronto, Ontario, M5G 2M1, Canada
| |
Collapse
|
7
|
Fallacara AL, Tintori C, Radi M, Schenone S, Botta M. Insight into the allosteric inhibition of Abl kinase. J Chem Inf Model 2014; 54:1325-38. [PMID: 24787133 DOI: 10.1021/ci500060k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abl kinase inhibitors targeting the ATP binding pocket are currently used as a front-line therapy for the treatment of chronic myelogenous leukemia (CML), but their use has significant limitation because of the development of drug resistance (especially due to the T315I mutation). Two compounds (GNF-2 and BO1) have been found able to inhibit the Abl activity through a peculiar mechanism of action. Particularly, GNF-2 acts as allosteric inhibitor against Bcr-Abl wild type (wt), but it has no activity against the gatekeeper mutant T315I. Its activity against the last mutant reappears when used together with an ATP-competitive inhibitor such as Imatinib or Nilotinib. A crystal structure of GNF-2 bound to the Abl myristoyl pocket (MP) has been released. On the contrary, BO1 shows an ATP-competitive/mixed mechanism of action against the wt, while it acts as an allosteric inhibitor against T315I. In order to better understand the mechanism of Abl allosteric inhibition, MD simulations and MM/GBSA analysis were performed on Abl wt and T315I in complex with GNF-2 and BO1, and the results were compared to those found for the natural myristoyl ligand. Similarly to that observed for the myristoyl group, the binding of an allosteric inhibitor to the MP promotes the formation of a compact and inhibited conformation of the wt protein, characterized by the stabilization of the intramolecular interactions that occur between SH2-SH3 and kinase domains. Conversely, an overall higher flexibility was observed with the Abl T315I mutant, especially in the case of GNF-2. Our analysis highlighted differences in the dynamic behavior of GNF-2 and BO1 which could explain the different biological profiles of the two allosteric inhibitors against the T315I mutant.
Collapse
Affiliation(s)
- Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
8
|
1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor. Chem Biol Interact 2014; 213:21-7. [DOI: 10.1016/j.cbi.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/02/2014] [Accepted: 01/17/2014] [Indexed: 12/18/2022]
|
9
|
2-Aminothiazolones as anti-HIV agents that act as gp120-CD4 inhibitors. Antimicrob Agents Chemother 2014; 58:3043-52. [PMID: 24614386 DOI: 10.1128/aac.02739-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors.
Collapse
|
10
|
Xue W, Liu H, Yao X. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors. PLoS One 2014; 9:e90799. [PMID: 24599328 PMCID: PMC3944435 DOI: 10.1371/journal.pone.0090799] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 02/05/2014] [Indexed: 01/28/2023] Open
Abstract
HIV-1 integrase (IN) is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD) with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
11
|
Reddy KK, Singh P, Singh SK. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: mutational studies, virtual screening and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 10:526-36. [DOI: 10.1039/c3mb70418a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Kumar A, Zhang KYJ. Computational Investigation of SENP:SUMO Protein-Protein Interaction for Structure Based Drug Design. Mol Inform 2013; 32:267-80. [PMID: 27481522 DOI: 10.1002/minf.201200124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/05/2013] [Indexed: 11/11/2022]
Abstract
SUMO specific proteases (SENPs) are cysteine proteases that carry out the proteolytic processing of SUMO from its pro form as well as its deconjugation from substrate proteins. SENPs have been implicated in various cancers including prostate cancer, thyroid cancer and colon cancer. Therefore, the inhibition of SENPs is an attractive strategy for the treatment of cancer. However, the current SENP inhibitor development strategies target catalytic site and involve the usage of reactive functionalities to facilitate the covalent binding with a catalytic cysteine, which makes them less desirable for therapeutic purposes. Based on the available structural knowledge about the interaction of SENPs with various SUMO paralogues, an alternative approach for inhibiting SENPs could be via targeting SENP:SUMO protein-protein interaction. Here we have investigated the protein-protein interaction between SENP and SUMO as a target for structure based drug design using pocket prediction, ligand binding hotspot mapping, molecular dynamics simulation and in silico alanine mutagenesis. Finally, we have provided recommendations for the structure based design of SENP:SUMO protein-protein interaction inhibitors. Our study indicates that the SENP inhibitors targeting SENP:SUMO protein-protein interaction is a viable alternative strategy to existing inhibitors targeting the enzymatic site.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan phone: +81-48-467-8792, fax: +81-48-467-8790
| | - Kam Y J Zhang
- Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan phone: +81-48-467-8792, fax: +81-48-467-8790.
| |
Collapse
|
13
|
De Luca L, Morreale F, Chimirri A. Insight into the Fundamental Interactions between LEDGF Binding Site Inhibitors and Integrase Combining Docking and Molecular Dynamics Simulations. J Chem Inf Model 2012. [DOI: 10.1021/ci300361e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura De Luca
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Francesca Morreale
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Alba Chimirri
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| |
Collapse
|
14
|
Venken T, Daelemans D, De Maeyer M, Voet A. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations. Proteins 2012; 80:1633-46. [PMID: 22447650 DOI: 10.1002/prot.24057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/06/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.
Collapse
Affiliation(s)
- Tom Venken
- Laboratory for Biomolecular Modelling and BioMacS, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, KULeuven, Heverlee, Belgium
| | | | | | | |
Collapse
|
15
|
4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res 2011; 92:102-7. [DOI: 10.1016/j.antiviral.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 01/22/2023]
|
16
|
Vasiljevic N, Veljkovic N, Kosec T, Ma XZ, Glisic S, Prljic J, Vujicic AD, Markovic L, Branch DR. A bioinformatics approach to identify natural autoantibodies from healthy blood donors' sera reactive with the HCV NS5A-derived peptide by immunoassay. Viral Immunol 2011; 24:69-76. [PMID: 21449717 DOI: 10.1089/vim.2010.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural autoantibodies (NAbs) are continually produced throughout life and have an ability to recognize self and altered self, as well as foreign antigens, by recognizing cellular pattern recognition receptors. Sometimes NAb specificity demonstrates overlap between human and pathologic proteomes. This information can be useful in selecting target sequences for screening purposes. In this study we undertook a multi-step bioinformatics search to predict a virus-derived peptide that can be recognized by NAbs in sera of uninfected individuals. We selected protein hepatitis C virus (HCV) NS5A as a target sequence, motivated by the fact that the HCV proteome is characterized by extensive sequence similarities to the human proteome, and because screening for anti-HCV antibodies, including anti-NS5A, is important clinically, particularly in screening of potential blood donors. The virus-specific peptide P1, and the homologous human peptide derived from enzyme-inducible nitric oxide synthase (iNOS), P2, exhibiting not only simple homology, but also complementarities of physicochemical patterns, were synthesized and 80 HCV-negative and 50 HCV-positive blood donor sera were tested by ELISA. These peptides reacted similarly (p<0.001) with HCV-negative sera, and in several cases the measured reactivity was significantly above the cut-off value of commercial anti-HCV screening assays. In HCV-positive sera, the titers of antibodies reactive with analyzed HCV NS5A peptide were not significantly increased (p<0.001) compared to host peptide, the implications of which are unclear, but may be consistent with these antibodies being "naturally produced." Finally, we extended our bioinformatics analyses to the dataset of human self-binding sequences, and propose a general approach for the selection of specific diagnostic and screening antigens for use in immunoassays.
Collapse
|