1
|
Panja S, Gaikwad H, Rankenberg J, Nam MH, Nagaraj RH. Promotion of Protein Solubility and Reduction in Stiffness in Human Lenses by Aggrelyte-1: Implications for Reversing Presbyopia. Int J Mol Sci 2023; 24:ijms24032196. [PMID: 36768517 PMCID: PMC9917358 DOI: 10.3390/ijms24032196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
With aging, human lenses lose the ability to focus on nearby objects due to decreases in accommodative ability, a condition known as presbyopia. An increase in stiffness or decrease in lens elasticity due to protein aggregation and insolubilization are the primary reasons for presbyopia. In this study, we tested aggrelyte-1 (S,N-diacetyl glutathione diethyl ester) for its ability to promote protein solubility and decrease the stiffness of lenses through its dual property of lysine acetylation and disulfide reduction. Treatment of water-insoluble proteins from aged human lenses (58-75 years) with aggrelyte-1 significantly increased the solubility of those proteins. A control compound that did not contain the S-acetyl group (aggrelyte-1C) was substantially less efficient in solubilizing water-insoluble proteins. Aggrelyte-1-treated solubilized protein had significant amounts of acetyllysine, as measured by Western blotting and LC-MS/MS. Aggrelytes increased the protein-free thiol content in the solubilized protein. Aged mouse (7 months) and human (44-66 years) lenses treated with aggrelyte-1 showed reduced stiffness accompanied by higher free thiol and acetyllysine levels compared with those treated with aggrelyte-1C or untreated controls. Our results suggested that aggrelyte-1 reduced lens stiffness through acetylation followed by disulfide reduction. This proof-of-concept study paves the way for developing aggrelyte-1 and related compounds to reverse presbyopia.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO 80045, USA
| | - Hanmant Gaikwad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO 80045, USA
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO 80045, USA
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303–724-5922
| |
Collapse
|
2
|
Chang YY, Hsieh MH, Huang YC, Chen CJ, Lee MT. Conformational Changes of α-Crystallin Proteins Induced by Heat Stress. Int J Mol Sci 2022; 23:ijms23169347. [PMID: 36012609 PMCID: PMC9409278 DOI: 10.3390/ijms23169347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
α-crystallin is a major structural protein in the eye lenses of vertebrates that is composed of two relative subunits, αA and αB crystallin, which function in maintaining lens transparency. As a member of the small heat-shock protein family (sHsp), α-crystallin exhibits chaperone-like activity to prevent the misfolding or aggregation of critical proteins in the lens, which is associated with cataract disease. In this study, high-purity αA and αB crystallin proteins were expressed from E. coli and purified by affinity and size-exclusion chromatography. The size-exclusion chromatography experiment showed that both αA and αB crystallins exhibited oligomeric complexes in solution. Here, we present the structural characteristics of α-crystallin proteins from low to high temperature by combining circular dichroism (CD) and small-angle X-ray scattering (SAXS). Not only the CD data, but also SAXS data show that α-crystallin proteins exhibit transition behavior on conformation with temperature increasing. Although their protein sequences are highly conserved, the analysis of their thermal stability showed different properties in αA and αB crystallin. In this study, taken together, the data discussed were provided to demonstrate more insights into the chaperone-like activity of α-crystallin proteins.
Collapse
Affiliation(s)
- Yu-Yung Chang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Meng-Hsuan Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300193, Taiwan
| | - Ming-Tao Lee
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Central University, Jhongli 32001, Taiwan
- Correspondence: ; Tel.: +886-3-5780281-7109
| |
Collapse
|
3
|
Malik A, Khan JM, Alhomida AS, Ola MS. Modulation of the Structure and Stability of Novel Camel Lens Alpha-Crystallin by pH and Thermal Stress. Gels 2022; 8:273. [PMID: 35621572 PMCID: PMC9140948 DOI: 10.3390/gels8050273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300−1000 kDa). Camel lens alpha-crystallin is a poorly characterized molecular chaperone, and the alphaB subunit possesses a novel extension at the N-terminal domain. We purified camel lens alpha-crystallin using size exclusion chromatography, and the purity was analyzed by gradient (4−12%) sodium dodecyl sulfate−polyacrylamide gel electrophoresis. Alpha-crystallin was equilibrated in the pH range of 1.0 to 7.5. Subsequently, thermal stress (20−94 °C) was applied to the alpha-crystallin samples, and changes in the conformation and stability were recorded by dynamic multimode spectroscopy and intrinsic and extrinsic fluorescence spectroscopic methods. Camel lens alpha-crystallin formed a random coil-like structure without losing its native-like beta-sheeted structure under two conditions: >50 °C at pH 7.5 and all temperatures at pH 2.0. The calculated enthalpy of denaturation, as determined by dynamic multimode spectroscopy at pH 7.5, 4.0, 2.0, and 1.0 revealed that alpha-crystallin never completely denatures under acidic conditions or thermal denaturation. Alpha-crystallin undergoes a single, reversible thermal transition at pH 7.5. The thermodynamic data (unfolding enthalpy and heat capacity change) and chaperone activities indicated that alpha-crystallin does not completely unfold above the thermal transition. Camels adapted to live in hot desert climates naturally exhibit the abovementioned unique features.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| |
Collapse
|
4
|
Marzec E, Olszewski J. Dielectric response to thermal denaturation of lenses in healthy and diabetic rabbits. Bioelectrochemistry 2021; 142:107923. [PMID: 34385118 DOI: 10.1016/j.bioelechem.2021.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
The relative permittivity and conductivity of healthy and alloxane-induced diabetic rabbits lenses were measured over a frequency range of 500 Hz to 100 kHz in an electric field and at temperatures from 25 to 150 °C. The dielectric spectra for both tissues showed two separate relaxations with a characteristic frequency of around 4 and 25 kHz assigned to the cortical and nuclear zones, respectively. These two dispersions are due to the interfacial polarization at the surface of the α-crystallin molecules. The denaturation temperature for the non-diabetic lens and the diabetic lens is approximately 70 and 80 °C, respectively. Moreover, the relative permittivity and conductivity values are higher in the diabetic lens than in the non-diabetic tissue at the same temperature and frequency. Our dielectric studies provide a better understanding of the thermal stability of crystallin-water complexes in normal and diseased human lenses.
Collapse
Affiliation(s)
- E Marzec
- Department of Bionics and Bioimpedance, Poznan University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland.
| | - J Olszewski
- Department of Bionics and Bioimpedance, Poznan University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland
| |
Collapse
|
5
|
Malik A, Almaharfi HA, Khan JM, Hisamuddin M, Alamery SF, Haq SH, Ahmed MZ. Protection of ζ-crystallin by α-crystallin under thermal stress. Int J Biol Macromol 2020; 167:289-298. [PMID: 33278428 DOI: 10.1016/j.ijbiomac.2020.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Cataract is one of the major causes of blindness worldwide. Several factors including post-translational modification, thermal and solar radiations promote cataractogenesis. The camel lens proteins survive very harsh desert conditions and resist cataractogenesis. The folding and aggregation mechanism of camel lens proteins are poorly characterized. The camel lens contains three ubiquitous crystallins (α-, β-, and γ-crystallin) and a novel protein (ζ-crystallin) in large amounts. In this study, a sequence similarity search of camel α-crystallin with that of other organisms showed that the camel αB-crystallin consists of an extended N-terminal domain. Our results indicate that camel α-crystallin efficiently prevented aggregation of ζ-crystallin, with or without an obligate cofactor up to 89 °C. It performed a quick and efficient holdase function irrespective of the unfolding stage or aggregation. Camel α-crystallin exhibits approximately 20% chaperone activity between 30 and 40 °C and is completely activated above 40 °C. Camel α-crystallin underwent a single reversible thermal transition without loss of β-sheet secondary structure. Intrinsic tryptophan fluorescence and ANS binding experiments revealed two transitions which corresponded to activation of its chaperone function. In contrast to earlier studies, camel α-crystallin completely protected lens proteins during thermal stress.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hajar Ahmed Almaharfi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Malik Hisamuddin
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Salman Freeh Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia
| |
Collapse
|
6
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
7
|
Rawat S, Gupta P, Kumar A, Garg P, Suri CR, Sahoo DK. Molecular Mechanism of Poly(vinyl alcohol) Mediated Prevention of Aggregation and Stabilization of Insulin in Nanoparticles. Mol Pharm 2015; 12:1018-30. [DOI: 10.1021/mp5003653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sanjay Rawat
- CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, Mohali 160062, India
| | - Anil Kumar
- CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, Mohali 160062, India
| | - C. Raman Suri
- CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Debendra K. Sahoo
- CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
8
|
Rabbani G, Ahmad E, Khan MV, Ashraf MT, Bhat R, Khan RH. Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): in relation to pH, chemical and thermal denaturation. RSC Adv 2015. [DOI: 10.1039/c4ra17093h] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of pH on the conformational behavior of Candida antartica lipase B (CaLB) has been monitored by spectroscopic and calorimetric studies.
Collapse
Affiliation(s)
- Gulam Rabbani
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| | - Ejaz Ahmad
- Central European Institute of Technology (CEITEC), Masaryk University
- CZ-62500 Brno
- Czech Republic
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| | | | - Rajiv Bhat
- School of Biotechnology
- Jawaharlal Nehru University
- New-Delhi 110067
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| |
Collapse
|
9
|
Villari V, Attanasio F, Micali N. Control of the structural stability of α-crystallin under thermal and chemical stress: the role of carnosine. J Phys Chem B 2014; 118:13770-6. [PMID: 25356752 DOI: 10.1021/jp5092009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural properties of α-crystallin, the major protein of the eye lens of mammals, in aqueous solution are investigated by means of small angle X-ray and dynamic light scattering. The research interest is devoted in particular to the effect of carnosine in protecting the protein under stress conditions, like temperature increase and presence of denaturant (guanidinium-HCl). The results suggest that carnosine interacts, through mechanisms involving hydrophobic interactions, with α-crystallin and avoids the structural changes in the quaternary structure induced by thermal and chemical stress. It is also shown that, if mediated by carnosine, the self-aggregation of α-crystallin induced by the denaturant at higher temperature can be controlled and even partially reversed. Therefore, carnosine is effective in preserving the structural integrity of the protein, suggesting the possibility of new strategies of intervention for preventing or treating pathologies related to protein aggregation, like cataracts.
Collapse
Affiliation(s)
- Valentina Villari
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
| | | | | |
Collapse
|
10
|
Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 2013; 531:100-9. [DOI: 10.1016/j.abb.2012.09.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
|
11
|
Yousefi R, Jalili S. The synergistic chaperoning operation in a Bi-chaperone system consisting of alpha-crystallin and beta-casein: Bovine pancreatic insulin as the target protein. Colloids Surf B Biointerfaces 2011; 88:497-504. [DOI: 10.1016/j.colsurfb.2011.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
|