1
|
Deng X, Wang S, Han Z, Gong W, Liu Y, Li C. Dynamics of binding interactions of TDP-43 and RNA: An equally weighted multiscale elastic network model study. Proteins 2021; 90:589-600. [PMID: 34599611 DOI: 10.1002/prot.26255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Transactive response DNA binding protein 43 (TDP-43), an alternative-splicing regulator, can specifically bind long UG-rich RNAs, associated with a range of neurodegenerative diseases. Upon binding RNA, TDP-43 undergoes a large conformational change with two RNA recognition motifs (RRMs) connected by a long linker rearranged, strengthening the binding affinity of TDP-43 with RNA. We extend the equally weighted multiscale elastic network model (ewmENM), including its Gaussian network model (ewmGNM) and Anisotropic network model (ewmANM), with the multiscale effect of interactions considered, to the characterization of the dynamics of binding interactions of TDP-43 and RNA. The results reveal upon RNA binding a loss of flexibility occurs to TDP-43's loop3 segments rich in positively charged residues and C-terminal of high flexibility, suggesting their anchoring RNA, induced fit and conformational adjustment roles in recognizing RNA. Additionally, based on movement coupling analyses, it is found that RNA binding strengthens the interactions among intra-RRM β-sheets and between RRMs partially through the linker's mediating role, which stabilizes RNA binding interface, facilitating RNA binding efficiency. In addition, utilizing our proposed thermodynamic cycle method combined with ewmGNM, we identify the key residues for RNA binding whose perturbations induce a large change in binding free energy. We identify not only the residues important for specific binding, but also the ones critical for the conformational rearrangement between RRMs. Furthermore, molecular dynamics simulations are also performed to validate and further interpret the ENM-based results. The study demonstrates a useful avenue to utilize ewmENM to investigate the protein-RNA interaction dynamics characteristics.
Collapse
Affiliation(s)
- Xueqing Deng
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shihao Wang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yang Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Xie P. Dynamics of ATP-dependent and ATP-independent steppings of myosin-V on actin: catch-bond characteristics. J R Soc Interface 2020; 17:20200029. [PMID: 32259459 PMCID: PMC7211485 DOI: 10.1098/rsif.2020.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022] Open
Abstract
An analytical theory is presented for the dynamics of myosin-V molecular motor, where both ATP-dependent and ATP-independent steppings are taken into account. Specifically, the dependences of velocity, run length and unbinding rate upon both forward and backward loads and ATP concentration are studied, explaining quantitatively the diverse available single-molecule data and providing predicted results. The results show that the unbinding rate increases with the increase of ATP concentration and levels off at both low and high ATP concentrations. More interestingly, at an ATP concentration that is not very low, the unbinding rate exhibits characteristics of a catch-slip bond under backward load, with the unbinding rate decreasing rapidly with the increase of the backward load in the range smaller than about 2.5 pN and then increasing slowly with the further increase of the backward load. By contrast, under forward load the unbinding rate exhibits a slip-bond characteristic.
Collapse
Affiliation(s)
- Ping Xie
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
3
|
Xie P. A model for the chemomechanical coupling of myosin-V molecular motors. RSC Adv 2019; 9:26734-26747. [PMID: 35528596 PMCID: PMC9070430 DOI: 10.1039/c9ra05072h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
Herein, a model for the chemomechanical coupling of dimeric myosin-V motors is presented. Based on this model and the proposal that the rate constants of the ATPase activity of the two heads are independent of an external force in a range smaller than the stall force, we analytically studied the dynamics of the motor, such as the stepping ratio, dwell time between two mechanical steps, and velocity, under varying force and ATP concentrations. The theoretical results well reproduce the diverse available single-molecule experimental data. In particular, the experimental data showing that at a low ATP concentration, the dwell time and velocity have less force dependency than at a high ATP concentration is explained quantitatively. Moreover, the dependency of the chemomechanical coupling ratio on the force and ATP concentration was studied. The paper presents a model of chemomechanical coupling of myosin-V motor, explaining the dynamics under varying force and ATP concentrations.![]()
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
4
|
Zheng W, Wen H, Iacobucci GJ, Popescu GK. Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling. Biophys J 2017. [PMID: 28636915 DOI: 10.1016/j.bpj.2017.04.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particularly the active open-channel state) were only resolved at moderate resolutions by cryo-electron microscopy (cryo-EM). To decrypt the mechanism of the NMDA receptor activation, structural modeling is essential to provide presently missing information about structural dynamics. We performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on an active-state cryo-EM map. We observed extensive conformational changes that allosterically couple the extracellular regulatory and agonist-binding domains to the pore-forming trans-membrane domain (TMD), and validated these, to our knowledge, new observations against known mutational and functional studies. Our results predict two key modes of collective motions featuring shearing/twisting of the extracellular domains relative to the TMD, reveal subunit-specific flexibility profiles, and identify functional hotspot residues at key domain-domain interfaces. Finally, by examining the conformational transition pathway between the allosterically inhibited form and the active form, we predict a discrete sequence of domain motions, which propagate from the extracellular domains to the TMD. In summary, our results offer rich structural and dynamic information, which is consistent with the literature on structure-function relationships in NMDA receptors, and will guide in-depth studies on the activation dynamics of this important neurotransmitter receptor.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York.
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York
| | - Gary J Iacobucci
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Simulating the dynamics of the mechanochemical cycle of myosin-V. Proc Natl Acad Sci U S A 2017; 114:2259-2264. [PMID: 28193897 DOI: 10.1073/pnas.1700318114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detailed dynamics of the cycle of myosin-V are explored by simulation approaches, examining the nature of the energy-driven motion. Our study started with Langevin dynamics (LD) simulations on a very coarse landscape with a single rate-limiting barrier and reproduced the stall force and the hand-over-hand dynamics. We then considered a more realistic landscape and used time-dependent Monte Carlo (MC) simulations that allowed trajectories long enough to reproduce the force/velocity characteristic sigmoidal correlation, while also reproducing the hand-over-hand motion. Overall, our study indicated that the notion of a downhill lever-up to lever-down process (popularly known as the powerstroke mechanism) is the result of the energetics of the complete myosin-V cycle and is not the source of directional motion or force generation on its own. The present work further emphasizes the need to use well-defined energy landscapes in studying molecular motors in general and myosin in particular.
Collapse
|
6
|
Zheng W. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling. Proteins 2017; 85:342-353. [PMID: 27936513 DOI: 10.1002/prot.25229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/31/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| |
Collapse
|
7
|
Jana B, Onuchic JN. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity. PLoS Comput Biol 2016; 12:e1005035. [PMID: 27494025 PMCID: PMC4975490 DOI: 10.1371/journal.pcbi.1005035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. Molecular motors are perhaps the most important proteins present in the cell. The importance specifically lies with the fact that these proteins use the chemical energy source (such as ATP) of the cell to generate mechanical work and perform a wide range of functionalities. In this article, we generalize the idea of using structure-based models to explore the mechanochemistry of myosin molecular motors in structural terms. We find that a structural adaptation of the motor head domain in post-powerstroke state signals faster ADP release from the trailing head to maintain its processivity while directionality arises from a careful design of peripheral structural elements. These results along with our earlier results on other motors provide a general rule for motor activity.
Collapse
Affiliation(s)
- Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
- * E-mail: (BJ); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail: (BJ); (JNO)
| |
Collapse
|
8
|
Zheng W, Qin F. A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation. ACTA ACUST UNITED AC 2016; 145:443-56. [PMID: 25918362 PMCID: PMC4411258 DOI: 10.1085/jgp.201411335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coarse-grained modeling and all-atom molecular dynamics simulation provide insight into the mechanism for heat activation of TRPV1 gating. The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecular dynamics (MD) simulation based on the recently solved high resolution structures of the open and closed form of TRPV1. Our coarse-grained normal mode analysis captures two key modes of collective motions involved in the TRPV1 gating transition, featuring a quaternary twist motion of the transmembrane domains (TMDs) relative to the intracellular domains (ICDs). Our transition pathway modeling predicts a sequence of structural movements that propagate from the ICDs to the TMDs via key interface domains (including the membrane proximal domain and the C-terminal domain), leading to sequential opening of the selectivity filter followed by the lower gate in the channel pore (confirmed by modeling conformational changes induced by the activation of ICDs). The above findings of coarse-grained modeling are robust to perturbation by lipids. Finally, our MD simulation of the ICD identifies key residues that contribute differently to the nonpolar energy of the open and closed state, and these residues are predicted to control the temperature sensitivity of TRPV1 gating. These computational predictions offer new insights to the mechanism for heat activation of TRPV1 gating, and will guide our future electrophysiology and mutagenesis studies.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics and Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14260
| | - Feng Qin
- Department of Physics and Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14260
| |
Collapse
|
9
|
Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Biophys J 2014; 105:1624-34. [PMID: 24094403 DOI: 10.1016/j.bpj.2013.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.
Collapse
|
10
|
Zheng W, Tekpinar M. Analysis of protein conformational transitions using elastic network model. Methods Mol Biol 2014; 1084:159-72. [PMID: 24061921 DOI: 10.1007/978-1-62703-658-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In this chapter, we demonstrate the usage of a coarse-grained elastic network model to analyze protein conformational transitions in the NS3 helicase (NS3hel) of Hepatitis C virus (HCV). This analysis allows us to identify and visualize collective domain motions involved in the conformational transitions and predict the order of structural events during the transitions. It is highly efficient and applicable to many multi-domain protein structures which undergo large conformational changes to fulfill their functions. This method is made available through a Web server ( http://enm.lobos.nih.gov ).
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
11
|
Electrostatic origin of the unidirectionality of walking myosin V motors. Proc Natl Acad Sci U S A 2013; 110:17326-31. [PMID: 24106304 DOI: 10.1073/pnas.1317641110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the basis for the action of myosin motors and related molecular machines requires a quantitative energy-based description of the overall functional cycle. Previous theoretical attempts to do so have provided interesting insights on parts of the cycle but could not generate a structure-based free energy landscape for the complete cycle of myosin. In particular, a nonphenomenological structure/energy-based understanding of the unidirectional motion is still missing. Here we use a coarse-grained model of myosin V and generate a structure-based free energy surface of the largest conformational change, namely the transition from the post- to prepowerstroke movement. We also couple the observed energetics of ligand binding/hydrolysis and product release to that of the conformational surface and reproduce the energetics of the complete mechanochemical cycle. It is found that the release in electrostatic free energy upon changing the conformation of the lever arm and the convertor domain from its post- to prepowerstroke state provides the necessary energy to bias the system towards the unidirectional movement of myosin V on the actin filament. The free energy change of 11 kcal is also in the range of ∼2-3 pN, which is consistent with the experimentally observed stalling force required to stop the motor completely on its track. The conformational-chemical coupling generating a successful powerstroke cycle is believed to be conserved among most members of the myosin family, thus highlighting the importance of the previously unknown role of electrostatics free energy in guiding the functional cycle in other actin-based myosin motors.
Collapse
|
12
|
Structure-based simulations of the translocation mechanism of the hepatitis C virus NS3 helicase along single-stranded nucleic acid. Biophys J 2013; 103:1343-53. [PMID: 22995507 DOI: 10.1016/j.bpj.2012.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/14/2023] Open
Abstract
The NS3 helicase of Hepatitis C virus is an ATP-fueled molecular motor that can translocate along single-stranded (ss) nucleic acid, and unwind double-stranded nucleic acids. It makes a promising antiviral target and an important prototype system for helicase research. Despite recent progress, the detailed mechanism of NS3 helicase remains unknown. In this study, we have combined coarse-grained (CG) and atomistic simulations to probe the translocation mechanism of NS3 helicase along ssDNA. At the residue level of detail, our CG simulations have captured functionally important interdomain motions of NS3 helicase and reproduced single-base translocation of NS3 helicase along ssDNA in the 3'-5' direction, which is in good agreement with experimental data and the inchworm model. By combining the CG simulations with residue-specific perturbations to protein-DNA interactions, we have identified a number of key residues important to the translocation machinery that agree with previous structural and mutational studies. Additionally, our atomistic simulations with targeted molecular dynamics have corroborated the findings of CG simulations and further revealed key protein-DNA hydrogen bonds that break/form during the transitions. This study offers, to our knowledge, the most detailed and realistic simulations of translocation mechanism of NS3 helicase. The simulation protocol established in this study will be useful for designing inhibitors that target the translocation machinery of NS3 helicase, and for simulations of a variety of nucleic-acid-based molecular motors.
Collapse
|
13
|
Tekpinar M, Zheng W. Coarse-grained and all-atom modeling of structural states and transitions in hemoglobin. Proteins 2012; 81:240-52. [PMID: 22987685 DOI: 10.1002/prot.24180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/27/2012] [Accepted: 09/10/2012] [Indexed: 11/08/2022]
Abstract
Hemoglobin (Hb), an oxygen-binding protein composed of four subunits (α1, α2, β1, and β2), is a well-known example of allosteric proteins that are capable of cooperative ligand binding. Despite decades of studies, the structural basis of its cooperativity remains controversial. In this study, we have integrated coarse-grained (CG) modeling, all-atom simulation, and structural data from X-ray crystallography and wide-angle X-ray scattering (WAXS), aiming to probe dynamic properties of the two structural states of Hb (T and R state) and the transitions between them. First, by analyzing the WAXS data of unliganded and liganded Hb, we have found that the structural ensemble of T or R state is dominated by one crystal structure of Hb with small contributions from other crystal structures of Hb. Second, we have used normal mode analysis to identify two distinct quaternary rotations between the α1β1 and α2β2 dimer, which drive the transitions between T and R state. We have also identified the hot-spot residues whose mutations are predicted to greatly change these quaternary motions. Third, we have generated a CG transition pathway between T and R state, which predicts a clear order of quaternary and tertiary changes involving α and β subunits in Hb. Fourth, we have used the accelerated molecular dynamics to perform an all-atom simulation starting from the T state of Hb, and we have observed a transition toward the R state of Hb. Further analysis of crystal structural data and the all-atom simulation trajectory has corroborated the order of quaternary and tertiary changes predicted by CG modeling.
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Physics Department, University at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
14
|
Zheng W. Coarse-grained modeling of the structural states and transition underlying the powerstroke of dynein motor domain. J Chem Phys 2012; 136:155103. [PMID: 22519354 DOI: 10.1063/1.4704661] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aims to model a minimal dynein motor domain capable of motor function, which consists of the linker domain, six AAA+ modules (AAA1-AAA6), coiled coil stalk, and C-terminus domain. To this end, we have used the newly solved X-ray structures of dynein motor domain to perform a coarse-grained modeling of dynein's post- and pre-powerstroke conformation and the conformational transition between them. First, we have used normal mode analysis to identify a single normal mode that captures the coupled motions of AAA1-AAA2 closing and linker domain rotation, which enables the ATP-driven recovery stroke of dynein. Second, based on the post-powerstroke conformation solved crystallographically, we have modeled dynein's pre-powerstroke conformation by computationally inducing AAA1-AAA2 closing and sliding of coiled coil stalk, and the resulting model features a linker domain near the pre-powerstroke position and a slightly tilted stalk. Third, we have modeled the conformational transition from pre- to post-powerstroke conformation, which predicts a clear sequence of structural events that couple microtubule binding, powerstroke and product release, and supports a signaling path from stalk to AAA1 via AAA3 and AAA4. Finally, we have found that a closed AAA3-AAA4 interface (compatible with nucleotide binding) is essential to the mechano-chemical coupling in dynein. Our modeling not only offers unprecedented structural insights to the motor function of dynein as described by past single-molecule, fluorescence resonance energy transfer, and electron microscopy studies, but also provides new predictions for future experiments to test.
Collapse
Affiliation(s)
- Wenjun Zheng
- Physics Department, University at Buffalo, Buffalo, New York 14260, USA.
| |
Collapse
|
15
|
Düttmann M, Togashi Y, Yanagida T, Mikhailov AS. Myosin-V as a mechanical sensor: an elastic network study. Biophys J 2012; 102:542-51. [PMID: 22325277 DOI: 10.1016/j.bpj.2011.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
According to recent experiments, the molecular-motor myosin behaves like a strain sensor, exhibiting different functional responses when loads in opposite directions are applied to its tail. Within an elastic-network model, we explore the sensitivity of the protein to the forces acting on the tail and find, in agreement with experiments, that such forces invoke conformational changes that should affect filament binding and ADP release. Furthermore, conformational responses of myosin to the application of forces to individual residues in its principal functional regions are systematically investigated and a detailed sensitivity map of myosin-V is thus obtained. The results suggest that the strain-sensor behavior is involved in the intrinsic operation of this molecular motor.
Collapse
Affiliation(s)
- Markus Düttmann
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| | | | | | | |
Collapse
|