1
|
Aleksandrova AA, Sarti E, Forrest LR. EncoMPASS: An encyclopedia of membrane proteins analyzed by structure and symmetry. Structure 2024; 32:492-504.e4. [PMID: 38367624 PMCID: PMC11251422 DOI: 10.1016/j.str.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Protein structure determination and prediction, active site detection, and protein sequence alignment techniques all exploit information about protein structure and structural relationships. For membrane proteins, however, there is limited agreement among available online tools for highlighting and mapping such structural similarities. Moreover, no available resource provides a systematic overview of quaternary and internal symmetries, and their orientation relative to the membrane, despite the fact that these properties can provide key insights into membrane protein function and evolution. Here, we describe the Encyclopedia of Membrane Proteins Analyzed by Structure and Symmetry (EncoMPASS), a database for relating integral membrane proteins of known structure from the points of view of sequence, structure, and symmetry. EncoMPASS is accessible through a web interface, and its contents can be easily downloaded. This allows the user not only to focus on specific proteins, but also to study general properties of the structure and evolution of membrane proteins.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. mBio 2022; 13:e0153922. [PMID: 35726920 PMCID: PMC9426558 DOI: 10.1128/mbio.01539-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest protein superfamilies. Functionally diverse, ABC transporters have been implicated in many aspects of microbial physiology. The genome of the human fungal pathogen Cryptococcus neoformans encodes 54 putative ABC transporters and most of them remain uncharacterized. In a previous genetic screen for fungal regulators of phagocytosis, we identified an uncharacterized gene, CNAG_06909, that modulates host interactions. This gene encoded a half-size ABC transporter of the PDR-type, and phenotypic studies of a strain with this gene deleted revealed an altered antifungal susceptibility profile, including hypersensitivity to fluconazole (FLC). This gene, which we named PDR6, localized to the endoplasmic reticulum (ER) and plasma membrane (PM), and when absent, less ergosterol was observed in the PM. Additionally, we observed that the pdr6Δ strain displayed a reduction in secreted polysaccharide capsular material. These changes to the cellular surface may explain the observed increased uptake by macrophages and the reduced intracellular survival. Finally, studies in mice demonstrated that Pdr6 function was required for the normal progression of cryptococcal infection. Taken together, this study demonstrates a novel dual role for PDR transporters in C. neoformans, which could represent a potential target for antifungal therapeutics. Furthermore, the atypical half-size transporter encoded by PDR6 is conserved in many fungal pathogens, but absent in model nonpathogenic fungi. Hence, this study provided a function for this unique group of fungal half-size PDR transporters that, although conserved, remain largely understudied.
Collapse
|
3
|
Pyrrocidine, a molecular off switch for fumonisin biosynthesis. PLoS Pathog 2020; 16:e1008595. [PMID: 32628727 PMCID: PMC7377494 DOI: 10.1371/journal.ppat.1008595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/23/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG_11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG_00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.
Collapse
|
4
|
Weckx S, Van Kerrebroeck S, De Vuyst L. Omics approaches to understand sourdough fermentation processes. Int J Food Microbiol 2019; 302:90-102. [DOI: 10.1016/j.ijfoodmicro.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
|
5
|
Shegay MV, Suplatov DA, Popova NN, Švedas VK, Voevodin VV. parMATT: parallel multiple alignment of protein 3D-structures with translations and twists for distributed-memory systems. Bioinformatics 2019; 35:4456-4458. [DOI: 10.1093/bioinformatics/btz224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract
Motivation
Accurate structural alignment of proteins is crucial at studying structure-function relationship in evolutionarily distant homologues. Various software tools were proposed to align multiple protein 3D-structures utilizing one CPU and thus are of limited productivity at large-scale analysis of protein families/superfamilies.
Results
The parMATT is a hybrid MPI/pthreads/OpenMP parallel re-implementation of the MATT algorithm to align multiple protein 3D-structures by allowing translations and twists. The parMATT can be faster than MATT on a single multi-core CPU, and provides a much greater speedup when executed on distributed-memory systems, i.e. computing clusters and supercomputers hosting memory-independent computing nodes. The most computationally demanding steps of the MATT algorithm—the initial construction of pairwise alignments between all input structures and further iterative progression of the multiple alignment—were parallelized using MPI and pthreads, and the concluding refinement step was optimized by introducing the OpenMP support. The parMATT can significantly accelerate the time-consuming process of building a multiple structural alignment from a large set of 3D-records of homologous proteins.
Availability and implementation
The source code is available at https://biokinet.belozersky.msu.ru/parMATT.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maksim V Shegay
- Faculty of Computational Mathematics and Cybernetics, Moscow, Russia
| | | | - Nina N Popova
- Faculty of Computational Mathematics and Cybernetics, Moscow, Russia
| | - Vytas K Švedas
- Belozersky Institute of Physicochemical Biology, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Vladimir V Voevodin
- Faculty of Computational Mathematics and Cybernetics, Moscow, Russia
- Research Computing Center at the Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Kristensen DM, Saeed U, Frishman D, Koonin EV. A census of α-helical membrane proteins in double-stranded DNA viruses infecting bacteria and archaea. BMC Bioinformatics 2015; 16:380. [PMID: 26554846 PMCID: PMC4641393 DOI: 10.1186/s12859-015-0817-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023] Open
Abstract
Background Viruses are the most abundant and genetically diverse biological entities on earth, yet the repertoire of viral proteins remains poorly explored. As the number of sequenced virus genomes grows into the thousands, and the number of viral proteins into the hundreds of thousands, we report a systematic computational analysis of the point of first-contact between viruses and their hosts, namely viral transmembrane (TM) proteins. Results The complement of α-helical TM proteins in double-stranded DNA viruses infecting bacteria and archaea reveals large-scale trends that differ from those of their hosts. Viruses typically encode a substantially lower fraction of TM proteins than archaea or bacteria, with the notable exception of viruses with virions containing a lipid component such as a lipid envelope, internal lipid core, or inner membrane vesicle. Compared to bacteriophages, archaeal viruses are substantially enriched in membrane proteins. However, this feature is not always stable throughout the evolution of a viral lineage; for example, TM proteins are not part of the common heritage shared between Lipothrixviridae and Rudiviridae. In contrast to bacteria and archaea, viruses almost completely lack proteins with complicated membrane topologies composed of more than 4 TM segments, with the few detected exceptions being obvious cases of relatively recent horizontal transfer from the host. Conclusions The dramatic differences between the membrane proteomes of cells and viruses stem from the fact that viruses do not depend on essential membranes for energy transformation, ion homeostasis, nutrient transport and signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0817-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Kristensen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA. .,Current address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
| | - Usman Saeed
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354, Freising, Germany. .,Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Dmitrij Frishman
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354, Freising, Germany. .,Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Hausrath AC. Model for coupled insertion and folding of membrane-spanning proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022707. [PMID: 25215758 DOI: 10.1103/physreve.90.022707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Current understanding of the forces directing the folding of integral membrane proteins is very limited compared to the detailed picture available for water-soluble proteins. While mechanistic studies of the folding process in vitro have been conducted for only a small number of membrane proteins, the available evidence indicates that their folding process is thermodynamically driven like that of soluble proteins. In vivo, however, the majority of integral membrane proteins are installed in membranes by dedicated machinery, suggesting that the cellular systems may act to facilitate and regulate the spontaneous physical process of folding. Both the in vitro folding process and the in vivo pathway must navigate an energy landscape dominated by the energetically favorable burial of hydrophobic segments in the membrane interior and the opposition to folding due to the need for passage of polar segments across the membrane. This manuscript describes a simple, exactly solvable model which incorporates these essential features of membrane protein folding. The model is used to compare the folding time under conditions which depict both the in vitro and in vivo pathways. It is proposed that the cellular complexes responsible for insertion of membrane proteins act by lowering the energy barrier for passage of polar regions through the membrane, thereby allowing the chain to more rapidly achieve the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Department of Chemistry and Biochemistry and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
8
|
Neumann S, Fuchs A, Hummel B, Frishman D. Classification of α-helical membrane proteins using predicted helix architectures. PLoS One 2013; 8:e77491. [PMID: 24204844 PMCID: PMC3808409 DOI: 10.1371/journal.pone.0077491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022] Open
Abstract
Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity, reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new approach to enhance our comprehensive structural classification of α-helical membrane proteins (CAMPS), which is primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the evolutionary tendency to re-use already available folds is more pronounced.
Collapse
Affiliation(s)
- Sindy Neumann
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Angelika Fuchs
- pRED, Pharma Research and Early Development, pRED Informatics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Barbara Hummel
- Department of Urology/Women’s Hospital and Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Dmitrij Frishman
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
- Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Västermark Å, Saier MH. Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins 2013; 82:336-46. [PMID: 24038584 DOI: 10.1002/prot.24401] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 01/12/2023]
Abstract
Evidence has been presented that 5+5 TMS and 7+7 TMS inverted repeat fold transporters are members of a single superfamily named the Amino acid-Polyamine-organoCation (APC) superfamily. However, the evolutionary relationship between the 5+5 and the 7+7 topological types has not been established. We have identified a common fold, consisting of a spiny membrane helix/sheet, followed by a U-like structure and a V-like structure that is recurrent between domain duplicated units of 5+5 and 7+7 inverted repeat folds. This fold is found in the following protein structures: AdiC, ApcT, LeuT, Mhp1, BetP, CaiT, and SglT (all 5+5 TMS repeats), as well as UraA and SulP (7+7 TMS repeats). AdiC, LeuT and Mhp1 have two extra TMSs after the second duplicated domain, SglT has four extra C-terminal TMSs, and BetP has two extra TMSs before the first duplicated domain. UraA and SulP on the other hand have two extra TMSs at the N-terminus of each duplicated domain unit. These observations imply that multiple hairpin and domain duplication events occurred during the evolution of the APC superfamily. We suggest that the five TMS architecture was primordial and that families gained two TMSs on either side of this basic structure via dissimilar hairpin duplications either before or after intragenic duplication. Evidence for homology between TMSs 1-2 of AdiC and TMSs 1-2 and 3-4 of UraA suggests that the 7+7 topology arose via an internal duplication of the N-terminal hairpin loop within the five TMS repeat unit followed by duplication of the 7 TMS domain.
Collapse
Affiliation(s)
- Åke Västermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | |
Collapse
|
10
|
Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 2012; 149:1607-21. [PMID: 22579045 DOI: 10.1016/j.cell.2012.04.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023]
Abstract
We show that amino acid covariation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane) applies a maximum entropy approach to infer evolutionary covariation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modeling by this method.
Collapse
Affiliation(s)
- Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|