1
|
Gasparini P, Philot EA, Pantaleão SQ, Torres-Bonfim NESM, Kliousoff A, Quiroz RCN, Perahia D, Simões RP, Magro AJ, Scott AL. Unveiling mutation effects on the structural dynamics of the main protease from SARS-CoV-2 with hybrid simulation methods. J Mol Graph Model 2023; 121:108443. [PMID: 36870228 PMCID: PMC9945984 DOI: 10.1016/j.jmgm.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The main protease of SARS-CoV-2 (called Mpro or 3CLpro) is essential for processing polyproteins encoded by viral RNA. Several Mpro mutations were found in SARS-CoV-2 variants, which are related to higher transmissibility, pathogenicity, and resistance to neutralization antibodies. Macromolecules adopt several favored conformations in solution depending on their structure and shape, determining their dynamics and function. In this study, we used a hybrid simulation method to generate intermediate structures along the six lowest frequency normal modes and sample the conformational space and characterize the structural dynamics and global motions of WT SARS-CoV-2 Mpro and 48 mutations, including mutations found in P.1, B.1.1.7, B.1.351, B.1.525 and B.1.429+B.1.427 variants. We tried to contribute to the elucidation of the effects of mutation in the structural dynamics of SARS-CoV-2 Mpro. A machine learning analysis was performed following the investigation regarding the influence of the K90R, P99L, P108S, and N151D mutations on the dimeric interface assembling of the SARS-CoV-2 Mpro. The parameters allowed the selection of potential structurally stable dimers, which demonstrated that some single surface aa substitutions not located at the dimeric interface (K90R, P99L, P108S, and N151D) are able to induce significant quaternary changes. Furthermore, our results demonstrated, by a Quantum Mechanics method, the influence of SARS-CoV-2 Mpro mutations on the catalytic mechanism, confirming that only one of the chains of the WT and mutant SARS-CoV-2 Mpros are prone to cleave substrates. Finally, it was also possible to identify the aa residue F140 as an important factor related to the increasing enzymatic reactivity of a significant number of SARS-CoV-2 Mpro conformations generated by the normal modes-based simulations.
Collapse
Affiliation(s)
- P Gasparini
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - E A Philot
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - S Q Pantaleão
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - N E S M Torres-Bonfim
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - A Kliousoff
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - R C N Quiroz
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - D Perahia
- École Normale Supérieure Paris-Saclay, LBPA, Scaly, France
| | - R P Simões
- Department of Bioprocesses and Biotechnology, School of Agriculture (FCA), Unesp, Botucatu, São Paulo, Brazil
| | - A J Magro
- Department of Bioprocesses and Biotechnology, School of Agriculture (FCA), Unesp, Botucatu, São Paulo, Brazil; Institute of Biotechnology (IBTEC), Unesp, Botucatu, São Paulo, Brazil
| | - A L Scott
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
2
|
Sanusi ZK, Govender T, Maguire GEM, Maseko SB, Lin J, Kruger HG, Honarparvar B. An insight to the molecular interactions of the FDA approved HIV PR drugs against L38L↑N↑L PR mutant. J Comput Aided Mol Des 2018; 32:459-471. [PMID: 29397520 DOI: 10.1007/s10822-018-0099-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
Abstract
The aspartate protease of the human immune deficiency type-1 virus (HIV-1) has become a crucial antiviral target in which many useful antiretroviral inhibitors have been developed. However, it seems the emergence of new HIV-1 PR mutations enhances drug resistance, hence, the available FDA approved drugs show less activity towards the protease. A mutation and insertion designated L38L↑N↑L PR was recently reported from subtype of C-SA HIV-1. An integrated two-layered ONIOM (QM:MM) method was employed in this study to examine the binding affinities of the nine HIV PR inhibitors against this mutant. The computed binding free energies as well as experimental data revealed a reduced inhibitory activity towards the L38L↑N↑L PR in comparison with subtype C-SA HIV-1 PR. This observation suggests that the insertion and mutations significantly affect the binding affinities or characteristics of the HIV PIs and/or parent PR. The same trend for the computational binding free energies was observed for eight of the nine inhibitors with respect to the experimental binding free energies. The outcome of this study shows that ONIOM method can be used as a reliable computational approach to rationalize lead compounds against specific targets. The nature of the intermolecular interactions in terms of the host-guest hydrogen bond interactions is discussed using the atoms in molecules (AIM) analysis. Natural bond orbital analysis was also used to determine the extent of charge transfer between the QM region of the L38L↑N↑L PR enzyme and FDA approved drugs. AIM analysis showed that the interaction between the QM region of the L38L↑N↑L PR and FDA approved drugs are electrostatic dominant, the bond stability computed from the NBO analysis supports the results from the AIM application. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide information that will aid in the design of much improved HIV-1 PR antiviral drugs.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Sibusiso B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
3
|
Sanusi ZK, Govender T, Maguire GEM, Maseko SB, Lin J, Kruger HG, Honarparvar B. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach. J Mol Graph Model 2017; 76:77-85. [PMID: 28711760 DOI: 10.1016/j.jmgm.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?Gbind) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions.
Collapse
Affiliation(s)
- Z K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - T Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - G E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| | - S B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - J Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - H G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - B Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
4
|
Yu N, Zotti MJ, Scheys F, Braz ASK, Penna PHC, Nachman RJ, Smagghe G. Flexibility and extracellular opening determine the interaction between ligands and insect sulfakinin receptors. Sci Rep 2015; 5:12627. [PMID: 26267367 PMCID: PMC4542541 DOI: 10.1038/srep12627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/29/2015] [Indexed: 12/03/2022] Open
Abstract
Despite their fundamental importance for growth, the mechanisms that regulate food intake are poorly understood. Our previous work demonstrated that insect sulfakinin (SK) signaling is involved in inhibiting feeding in an important model and pest insect, the red flour beetle Tribolium castaneum. Because the interaction of SK peptide and SK receptors (SKR) initiates the SK signaling, we have special interest on the structural factors that influence the SK-SKR interaction. First, the three-dimensional structures of the two T. castaneum SKRs (TcSKR1 and TcSKR2) were generated from molecular modeling and they displayed significance in terms of the outer opening of the cavity and protein flexibility. TcSKR1 contained a larger outer opening of the cavity than that in TcSKR2, which allows ligands a deep access into the cavity through cell membrane. Second, normal mode analysis revealed that TcSKR1 was more flexible than TcSKR2 during receptor-ligand interaction. Third, the sulfated SK (sSK) and sSK-related peptides were more potent than the nonsulfated SK, suggesting the importance of the sulfate moiety.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Moises João Zotti
- Molecular Entomology and Applied Bioinformatics, Department of Crop Protection, Federal University of Pelotas, 96010-900, Pelotas, RS, Brazil
| | - Freja Scheys
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Antônio S K Braz
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, 09210-170 Santo André, Brazil
| | - Pedro H C Penna
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, 09210-170 Santo André, Brazil
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, TX 77845, USA
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
De Conto V, Braz ASK, Perahia D, Scott LPB. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants. J Mol Graph Model 2015; 59:107-16. [PMID: 25948548 DOI: 10.1016/j.jmgm.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 02/04/2023]
Abstract
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Collapse
Affiliation(s)
- Valderes De Conto
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Antônio S K Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Luis P B Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France.
| |
Collapse
|
6
|
Petitjean M, Badel A, Veitia RA, Vanet A. Synthetic lethals in HIV: ways to avoid drug resistance : Running title: Preventing HIV resistance. Biol Direct 2015; 10:17. [PMID: 25888435 PMCID: PMC4399722 DOI: 10.1186/s13062-015-0044-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Abstract
Background RNA viruses rapidly accumulate genetic variation, which can give rise to synthetic lethal (SL) and deleterious (SD) mutations. Synthetic lethal mutations (non-lethal when alone but lethal when combined in one genome) have been studied to develop cancer therapies. This principle can also be used against fast-evolving RNA-viruses. Indeed, targeting protein sites involved in SD + SL interactions with a drug would render any mutation of such sites, lethal. Results Here, we set up a strategy to detect intragenic pairs of SL and SD at the surface of the protein to predict less escapable drug target sites. For this, we detected SD + SL, studying HIV protease (PR) and reverse transcriptase (RT) sequence alignments from two groups of VIH+ individuals: treated with drugs (T) or not (NT). Using a series of statistical approaches, we were able to propose bona fide SD + SL couples. When focusing on spatially close co-variant SD + SL couples at the surface of the protein, we found 5 SD + SL groups (2 in the protease and 3 in the reverse transcriptase), which could be good candidates to form pockets to accommodate potential drugs. Conclusions Thus, designing drugs targeting these specific SD + SL groups would not allow the virus to mutate any residue involved in such groups without losing an essential function. Moreover, we also show that the selection pressure induced by the treatment leads to the appearance of new mutations, which change the mutational landscape of the protein. This drives the existence of differential SD + SL couples between the drug-treated and non-treated groups. Thus, new anti-viral drugs should be designed differently to target such groups. Reviewers This article was reviewed by Neil Greenspan Csaba Pal and István Simon. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0044-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michel Petitjean
- Univ Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France. .,MTI, INSERM UMR-S 973, F-75013, Paris, France.
| | - Anne Badel
- Univ Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France. .,MTI, INSERM UMR-S 973, F-75013, Paris, France.
| | - Reiner A Veitia
- Univ Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France. .,CNRS, UMR7592, Institut Jacques Monod, F-75013, Paris, France.
| | - Anne Vanet
- Univ Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France. .,CNRS, UMR7592, Institut Jacques Monod, F-75013, Paris, France. .,Atelier de Bio Informatique, F-75005, Paris, France.
| |
Collapse
|
7
|
Herman Lara H. Luciferase Time-based, High-throughput Screening Assay for the Discovery of HIV-1 Inhibitors. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/jhvrv.2014.01.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Chemical specificity and conformational flexibility in proteinase-inhibitor interaction: scaffolds for promiscuous binding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:151-7. [PMID: 25151636 DOI: 10.1016/j.pbiomolbio.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 11/24/2022]
Abstract
One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein-protein complexes are involved in many essential cellular processes. Interfaces of protein-protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence-structure-function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase-inhibitor protein complexes.
Collapse
|
9
|
Brut M, Estève A, Landa G, Djafari Rouhani M. Toward in silico biomolecular manipulation through static modes: atomic scale characterization of HIV-1 protease flexibility. J Phys Chem B 2014; 118:2821-30. [PMID: 24568689 DOI: 10.1021/jp4113156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probing biomolecular flexibility with atomic-scale resolution is a challenging task in current computational biology for fundamental understanding and prediction of biomolecular interactions and associated functions. This paper makes use of the static mode method to study HIV-1 protease considered as a model system to investigate the full biomolecular flexibility at the atomic scale, the screening of active site biomechanical properties, the blind prediction of allosteric sites, and the design of multisite strategies to target deformations of interest. Relying on this single calculation run of static modes, we demonstrate that in silico predictive design of an infinite set of complex excitation fields is reachable, thanks to the storage of the static modes in a data bank that can be used to mimic single or multiatom contact and efficiently anticipate conformational changes arising from external stimuli. All along this article, we compare our results to data previously published and propose a guideline for efficient, predictive, and custom in silico experiments.
Collapse
Affiliation(s)
- Marie Brut
- CNRS , LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | | | | |
Collapse
|
10
|
Qi F, Fudo S, Neya S, Hoshino T. A Cluster Analysis on the Structural Diversity of Protein Crystals, Exemplified by Human Immunodeficiency Virus Type 1 Protease. Chem Pharm Bull (Tokyo) 2014; 62:568-77. [DOI: 10.1248/cpb.c14-00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fei Qi
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Satoshi Fudo
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Saburo Neya
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
11
|
Zotti MJ, De Geyter E, Swevers L, Braz ASK, Scott LPB, Rougé P, Coll J, Grutzmacher AD, Lenardão EJ, Smagghe G. A cell-based reporter assay for screening for EcR agonist/antagonist activity of natural ecdysteroids in Lepidoptera (Bm5) and Diptera (S2) cell cultures, followed by modeling of ecdysteroid-EcR interactions and normal mode analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:309-320. [PMID: 24267692 DOI: 10.1016/j.pestbp.2013.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50=3.3μM) and Bm5 cells (EC50=5.3μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50=0.71μM and 0.00089μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50=18μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.
Collapse
Affiliation(s)
- Moisés J Zotti
- Department of Crop Protection, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Department of Phytosanitary, FAEM, Federal University of Pelotas, P.O. Box 354, CEP, 96010-900 Pelotas, RS, Brazil; Department of Crop Protection, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Philot EA, Perahia D, Braz ASK, Costa MGDS, Scott LPB. Binding sites and hydrophobic pockets in Human Thioredoxin 1 determined by normal mode analysis. J Struct Biol 2013; 184:293-300. [DOI: 10.1016/j.jsb.2013.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022]
|