1
|
Blanc FEC, Houdusse A, Cecchini M. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. PLoS Comput Biol 2024; 20:e1012005. [PMID: 38662764 PMCID: PMC11086841 DOI: 10.1371/journal.pcbi.1012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Akter F, Ochala J, Fornili A. Binding pocket dynamics along the recovery stroke of human β-cardiac myosin. PLoS Comput Biol 2023; 19:e1011099. [PMID: 37200380 DOI: 10.1371/journal.pcbi.1011099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human β-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.
Collapse
Affiliation(s)
- Fariha Akter
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, København N, Denmark
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Cardiomyopathy mutations impact the actin-activated power stroke of human cardiac myosin. Biophys J 2021; 120:2222-2236. [PMID: 33864791 DOI: 10.1016/j.bpj.2021.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac muscle contraction is driven by the molecular motor myosin, which uses the energy from ATP hydrolysis to generate a power stroke when interacting with actin filaments, although it is unclear how this mechanism is impaired by mutations in myosin that can lead to heart failure. We have applied a fluorescence resonance energy transfer (FRET) strategy to investigate structural changes in the lever arm domain of human β-cardiac myosin subfragment 1 (M2β-S1). We exchanged the human ventricular regulatory light chain labeled at a single cysteine (V105C) with Alexa 488 onto M2β-S1, which served as a donor for Cy3ATP bound to the active site. We monitored the FRET signal during the actin-activated product release steps using transient kinetic measurements. We propose that the fast phase measured with our FRET probes represents the macroscopic rate constant associated with actin-activated rotation of the lever arm during the power stroke in M2β-S1. Our results demonstrated M2β-S1 has a slower actin-activated power stroke compared with fast skeletal muscle myosin and myosin V. Measurements at different temperatures comparing the rate constants of the actin-activated power stroke and phosphate release are consistent with a model in which the power stroke occurs before phosphate release and the two steps are tightly coupled. We suggest that the actin-activated power stroke is highly reversible but followed by a highly irreversible phosphate release step in the absence of load and free phosphate. We demonstrated that hypertrophic cardiomyopathy (R723G)- and dilated cardiomyopathy (F764L)-associated mutations both reduced actin activation of the power stroke in M2β-S1. We also demonstrate that both mutations alter in vitro actin gliding in the presence and absence of load. Thus, examining the structural kinetics of the power stroke in M2β-S1 has revealed critical mutation-associated defects in the myosin ATPase pathway, suggesting these measurements will be extremely important for establishing structure-based mechanisms of contractile dysfunction.
Collapse
|
4
|
Tang W, Unrath WC, Desetty R, Yengo CM. Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil. J Biol Chem 2019; 294:17314-17325. [PMID: 31578282 DOI: 10.1074/jbc.ra119.010217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated a dilated cardiomyopathy (DCM) mutation (F764L) in human β-cardiac myosin by determining its motor properties in the presence and absence of the heart failure drug omecamtive mecarbil (OM). The mutation is located in the converter domain, a key region of communication between the catalytic motor and lever arm in myosins, and is nearby but not directly in the OM-binding site. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing the F764L mutation, and compared it to WT with in vitro motility as well as steady-state and transient kinetics measurements. In the absence of OM we demonstrate that the F764L mutation does not significantly change maximum actin-activated ATPase activity but slows actin sliding velocity (15%) and the actomyosin ADP release rate constant (25%). The transient kinetic analysis without OM demonstrates that F764L has a similar duty ratio as WT in unloaded conditions. OM is known to enhance force generation in cardiac muscle while it inhibits the myosin power stroke and enhances actin-attachment duration. We found that OM has a reduced impact on F764L ATPase and sliding velocity compared with WT. Specifically, the EC50 for OM induced inhibition of in vitro motility was 3-fold weaker in F764L. Also, OM reduces maximum actin-activated ATPase 2-fold in F764L, compared with 4-fold with WT. Overall, our results suggest that F764L attenuates the impact of OM on actin-attachment duration and/or the power stroke. Our work highlights the importance of mutation-specific considerations when pursuing small molecule therapies for cardiomyopathies.
Collapse
Affiliation(s)
- Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - William C Unrath
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
5
|
An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proc Natl Acad Sci U S A 2018; 115:6213-6218. [PMID: 29844196 DOI: 10.1073/pnas.1711512115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins form a class of actin-based, ATPase motor proteins that mediate important cellular functions such as cargo transport and cell motility. Their functional cycle involves two large-scale swings of the lever arm: the force-generating powerstroke, which takes place on actin, and the recovery stroke during which the lever arm is reprimed into an armed configuration. Previous analyses of the prerecovery (postrigor) and postrecovery (prepowerstroke) states predicted that closure of switch II in the ATP binding site precedes the movement of the converter and the lever arm. Here, we report on a crystal structure of myosin VI, called pretransition state (PTS), which was solved at 2.2 Å resolution. Structural analysis and all-atom molecular dynamics simulations are consistent with PTS being an intermediate along the recovery stroke, where the Relay/SH1 elements adopt a postrecovery conformation, and switch II remains open. In this state, the converter appears to be largely uncoupled from the motor domain and explores an ensemble of partially reprimed configurations through extensive, reversible fluctuations. Moreover, we found that the free energy cost of hydrogen-bonding switch II to ATP is lowered by more than 10 kcal/mol compared with the prerecovery state. These results support the conclusion that closing of switch II does not initiate the recovery stroke transition in myosin VI. Rather, they suggest a mechanism in which lever arm repriming would be mostly driven by thermal fluctuations and eventually stabilized by the switch II interaction with the nucleotide in a ratchet-like fashion.
Collapse
|
6
|
Winkelmann DA, Forgacs E, Miller MT, Stock AM. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat Commun 2015; 6:7974. [PMID: 26246073 PMCID: PMC4918383 DOI: 10.1038/ncomms8974] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022] Open
Abstract
Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.
Collapse
Affiliation(s)
- Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
7
|
Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, O’Leary PW, Olson TM. Recessive
MYH6
Mutations in Hypoplastic Left Heart With Reduced Ejection Fraction. ACTA ACUST UNITED AC 2015; 8:564-71. [DOI: 10.1161/circgenetics.115.001070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022]
Abstract
Background—
The molecular underpinnings of hypoplastic left heart are poorly understood. Staged surgical palliation has dramatically improved survival, yet eventual failure of the systemic right ventricle necessitates cardiac transplantation in a subset of patients. We sought to identify genetic determinants of hypoplastic left heart with latent right ventricular dysfunction in individuals with a Fontan circulation.
Methods and Results—
Evaluation of cardiac structure and function by echocardiography in patients with hypoplastic left heart and their first-degree relatives identified 5 individuals with right ventricular ejection fraction ≤40% after Fontan operation. Whole genome sequencing was performed on DNA from 21 family members, filtering for genetic variants with allele frequency <1% predicted to alter protein structure or expression. Secondary family-based filtering for de novo and recessive variants revealed rare inherited missense mutations on both paternal and maternal alleles of
MYH6
, encoding myosin heavy chain 6, in 2 patients who developed right ventricular dysfunction 3 to 11 years postoperatively. Parents and siblings who were heterozygous carriers had normal echocardiograms. Protein modeling of the 4 highly conserved amino acid substitutions, residing in both head and tail domains, predicted perturbation of protein structure and function.
Conclusions—
In contrast to dominant
MYH6
mutations with variable penetrance identified in other congenital heart defects and dilated cardiomyopathy, this study reveals compound heterozygosity for recessive
MYH6
mutations in patients with hypoplastic left heart and reduced systemic right ventricular ejection fraction. These findings implicate a shared molecular basis for the developmental arrest and latent myopathy of left and right ventricles, respectively.
Collapse
Affiliation(s)
- Jeanne L. Theis
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Michael T. Zimmermann
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Jared M. Evans
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Bruce W. Eckloff
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Eric D. Wieben
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Muhammad Y. Qureshi
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Patrick W. O’Leary
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Timothy M. Olson
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
9
|
Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E. Omecamtiv Mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin. Biochemistry 2015; 54:1963-75. [PMID: 25680381 DOI: 10.1021/bi5015166] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We determined the effect of Omecamtiv Mecarbil, a novel allosteric effector of cardiac muscle myosin, on the kinetic and "in vitro" motility properties of the porcine ventricular heavy meromyosin (PV-HMM). Omecamtiv Mecarbil increases the equilibrium constant of the hydrolysis step (M-ATP ⇄ M-ADP-Pi) from 2.4 to 6 as determined by quench flow, but the maximal rates of both the hydrolysis step and tryptophan fluorescence increase are unchanged by the drug. OM also increases the amplitude of the fast phase of phosphate dissociation (AM-ADP-Pi → AM-ADP + Pi) that is associated with force production in muscle by 4-fold. These results suggest a mechanism in which hydrolysis of M-ATP to M-ADP-Pi occurs both before and after the recovery stroke, but rapid acceleration of phosphate dissociation by actin occurs only on post-recovery stroke A-M-ADP-Pi. One of the more dramatic effects of OM on PV-HMM is a 14-fold decrease in the unloaded shortening velocity measured by the in vitro motility assay. The increase in flux through phosphate dissociation and the unchanged rate of ADP dissociation (AM-ADP → AM + ADP) by the drug produce a higher duty ratio motor in which a larger fraction of myosin heads are strongly bound to actin filaments. The increased internal load produced by a larger fraction of strongly attached crossbridges explains the reduced rate of in vitro motility velocity in the presence of OM and predicts that the drug will produce slower and stronger contraction of cardiac muscle.
Collapse
Affiliation(s)
- Yingying Liu
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Howard D White
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Betty Belknap
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Donald A Winkelmann
- ‡Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eva Forgacs
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
10
|
Kronert WA, Melkani GC, Melkani A, Bernstein SI. Mapping interactions between myosin relay and converter domains that power muscle function. J Biol Chem 2014; 289:12779-90. [PMID: 24627474 DOI: 10.1074/jbc.m114.550673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.
Collapse
Affiliation(s)
- William A Kronert
- From the Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, California 92182-4614
| | | | | | | |
Collapse
|
11
|
Pecci A, Klersy C, Gresele P, Lee KJD, De Rocco D, Bozzi V, Russo G, Heller PG, Loffredo G, Ballmaier M, Fabris F, Beggiato E, Kahr WHA, Pujol-Moix N, Platokouki H, Van Geet C, Noris P, Yerram P, Hermans C, Gerber B, Economou M, De Groot M, Zieger B, De Candia E, Fraticelli V, Kersseboom R, Piccoli GB, Zimmermann S, Fierro T, Glembotsky AC, Vianello F, Zaninetti C, Nicchia E, Güthner C, Baronci C, Seri M, Knight PJ, Balduini CL, Savoia A. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2013; 35:236-47. [PMID: 24186861 DOI: 10.1002/humu.22476] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/18/2013] [Indexed: 01/05/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|