1
|
Brinson RG, Arbogast LW, Marino JP, Delaglio F. Best Practices in Utilization of 2D-NMR Spectral Data as the Input for Chemometric Analysis in Biopharmaceutical Applications. J Chem Inf Model 2020; 60:2339-2355. [DOI: 10.1021/acs.jcim.0c00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Robert G. Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Luke W. Arbogast
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - John P. Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
2
|
Sakurai K, Maeno A, Lee YH, Akasaka K. Conformational Properties Relevant to the Amyloidogenicity of β 2-Microglobulin Analyzed Using Pressure- and Salt-Dependent Chemical Shift Data. J Phys Chem B 2019; 123:836-844. [PMID: 30604603 DOI: 10.1021/acs.jpcb.8b11408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
β2-Microglobulin (β2m) is associated with dialysis-related amyloidosis. In vitro experiments have shown that β2m forms amyloid fibrils at acidic pHs in the presence of moderate concentrations of salt. Previous studies suggested that acid-denatured β2m has a hydrophobic residual structure, and the exposure of the hydrophobic residues enhances the association with seeds or other β2m monomers. However, the nature of the residual structure relevant to its amyloidogenicity remains to be investigated. To understand the structural properties of acid-denatured β2m and the role of salt, we investigated pressure- and salt concentration-dependent conformational changes by nuclear magnetic resonance spectroscopy and other methods. Here, pressure was utilized to characterize the conformers existing in a conformational equilibrium at ambient pressure. The obtained pressure- and salt concentration-dependent chemical shift data were simultaneously subjected to principal component analysis to characterize individual conformational change events. Unexpectedly, the addition of salt induced an expansion of the β2m molecule, which likely resulted from the exclusion of the N-terminal region from the hydrophobic cluster region. The dissected chemical shift patterns for the salt-induced conformational change and other experimental data indicated that this conformational change caused a rigidification in the intrinsic hydrophobic cluster, leading to the observed amyloidogenicity.
Collapse
Affiliation(s)
- Kazumasa Sakurai
- High Pressure Protein Research Center, Institute of Advanced Technology , Kindai University , 930 Nishimitani , Kinokawa, Wakayama 649-6493 , Japan.,Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Akihiro Maeno
- Laboratory of Medical Chemistry , Kansai Medical University , 2-5-1 Shin-machi , Hirakata , Osaka 573-1010 , Japan
| | - Young-Ho Lee
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita, Osaka 565-0871 , Japan.,Protein Structure Research Group, Division of Bioconvergence Analysis , Korea Basic Science Institute , Cheongju , Chungcheongbuk-do 28119 , South Korea
| | - Kazuyuki Akasaka
- Kyoto Prefectural University of Medicine , 465 Kajii-cho , Kamigyo-ku, Kyoto 602-8566 , Japan
| |
Collapse
|
3
|
Sertraline, chlorprothixene, and chlorpromazine characteristically interact with the REST-binding site of the corepressor mSin3, showing medulloblastoma cell growth inhibitory activities. Sci Rep 2018; 8:13763. [PMID: 30213984 PMCID: PMC6137095 DOI: 10.1038/s41598-018-31852-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of repressor-element 1 silencing transcription factor REST/NRSF is related to several neuropathies, including medulloblastoma, glioblastoma, Huntington’s disease, and neuropathic pain. Inhibitors of the interaction between the N-terminal repressor domain of REST/NRSF and the PAH1 domain of its corepressor mSin3 may ameliorate such neuropathies. In-silico screening based on the complex structure of REST/NRSF and mSin3 PAH1 yielded 52 active compounds, including approved neuropathic drugs. We investigated their binding affinity to PAH1 by NMR, and their inhibitory activity toward medulloblastoma cell growth. Interestingly, three antidepressant and antipsychotic medicines, sertraline, chlorprothixene, and chlorpromazine, were found to strongly bind to PAH1. Multivariate analysis based on NMR chemical shift changes in PAH1 residues induced by ligand binding was used to identify compound characteristics associated with cell growth inhibition. Active compounds showed a new chemo-type for inhibitors of the REST/NRSF-mSin3 interaction, raising the possibility of new therapies for neuropathies caused by dysregulation of REST/NRSF.
Collapse
|
4
|
Affinities and Comparisons of Enzyme States by Principal Component Analysis of NMR Spectra, Automated using TREND Software. Methods Enzymol 2018; 607:217-240. [DOI: 10.1016/bs.mie.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Multiple Ligand-Bound States of a Phosphohexomutase Revealed by Principal Component Analysis of NMR Peak Shifts. Sci Rep 2017; 7:5343. [PMID: 28706231 PMCID: PMC5509744 DOI: 10.1038/s41598-017-05557-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
Enzymes sample multiple conformations during their catalytic cycles. Chemical shifts from Nuclear Magnetic Resonance (NMR) are hypersensitive to conformational changes and ensembles in solution. Phosphomannomutase/phosphoglucomutase (PMM/PGM) is a ubiquitous four-domain enzyme that catalyzes phosphoryl transfer across phosphohexose substrates. We compared states the enzyme visits during its catalytic cycle. Collective responses of Pseudomonas PMM/PGM to phosphosugar substrates and inhibitor were assessed using NMR-detected titrations. Affinities were estimated from binding isotherms obtained by principal component analysis (PCA). Relationships among phosphosugar-enzyme associations emerge from PCA comparisons of the titrations. COordiNated Chemical Shifts bEhavior (CONCISE) analysis provides novel discrimination of three ligand-bound states of PMM/PGM harboring a mutation that suppresses activity. Enzyme phosphorylation and phosphosugar binding appear to drive the open dephosphorylated enzyme to the free phosphorylated state, and on toward ligand-closed states. Domain 4 appears central to collective responses to substrate and inhibitor binding. Hydrogen exchange reveals that binding of a substrate analogue enhances folding stability of the domains to a uniform level, establishing a globally unified structure. CONCISE and PCA of NMR spectra have discovered novel states of a well-studied enzyme and appear ready to discriminate other enzyme and ligand binding states.
Collapse
|
6
|
Xu J, Van Doren SR. Tracking Equilibrium and Nonequilibrium Shifts in Data with TREND. Biophys J 2017; 112:224-233. [PMID: 28122211 DOI: 10.1016/j.bpj.2016.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022] Open
Abstract
Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capabilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent component analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra from many spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus provides convenient tools to resolve the processes recorded by diverse biophysical methods.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
7
|
Narayanan C, Bafna K, Roux LD, Agarwal PK, Doucet N. Applications of NMR and computational methodologies to study protein dynamics. Arch Biochem Biophys 2017; 628:71-80. [PMID: 28483383 DOI: 10.1016/j.abb.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.
Collapse
Affiliation(s)
- Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Pratul K Agarwal
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, The Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada; GRASP, The Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
8
|
Jeong JH, Cho SJ, Kim Y. High-Resolution NMR Spectroscopy for the Classification of Beer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji-Ho Jeong
- Department of Chemistry; Hankuk University of Foreign Studies; Yong-In 17035 Republic of Korea
| | - Sung-Jin Cho
- Department of Chemistry; Hankuk University of Foreign Studies; Yong-In 17035 Republic of Korea
| | - Yongae Kim
- Department of Chemistry; Hankuk University of Foreign Studies; Yong-In 17035 Republic of Korea
| |
Collapse
|
9
|
Ma FH, Wang X, Chen JL, Wen X, Sun H, Su XC. Deciphering the Multisite Interactions of a Protein and Its Ligand at Atomic Resolution by Using Sensitive Paramagnetic Effects. Chemistry 2017; 23:926-934. [DOI: 10.1002/chem.201604393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Fei-He Ma
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Han Sun
- Department of Structural Biology; Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Str. 10 13125 Berlin Germany
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
10
|
Abstract
Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biochemistry, University of Missouri , 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri , 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Moscato B, Swain M, Loria JP. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Biochemistry 2016; 55:382-95. [PMID: 26678253 PMCID: PMC8259413 DOI: 10.1021/acs.biochem.5b01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerase β (Pol β) repairs single-nucleotide gapped DNA (sngDNA) by enzymatic incorporation of the Watson-Crick partner nucleotide at the gapped position opposite the templating nucleotide. The process by which the matching nucleotide is incorporated into a sngDNA sequence has been relatively well-characterized, but the process of discrimination from nucleotide misincorporation remains unclear. We report here NMR spectroscopic characterization of full-length, uniformly labeled Pol β in apo, sngDNA-bound binary, and ternary complexes containing matching and mismatching nucleotide. Our data indicate that, while binding of the correct nucleotide to the binary complex induces chemical shift changes consistent with the process of enzyme closure, the ternary Pol β complex containing a mismatching nucleotide exhibits no such changes and appears to remain in an open, unstable, binary-like conformation. Our findings support an induced-fit mechanism for polymerases in which a closed ternary complex can only be achieved in the presence of matching nucleotide.
Collapse
Affiliation(s)
- Beth Moscato
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Monalisa Swain
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Khago D, Wong EK, Kingsley CN, Freites JA, Tobias DJ, Martin RW. Increased hydrophobic surface exposure in the cataract-related G18V variant of human γS-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:325-32. [PMID: 26459004 DOI: 10.1016/j.bbagen.2015.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND The objective of this study was to determine whether the cataract-related G18V variant of human γS-crystallin has increased exposure of hydrophobic residues that could explain its aggregation propensity and/or recognition by αB-crystallin. METHODS We used an ANS fluorescence assay and NMR chemical shift perturbation to experimentally probe exposed hydrophobic surfaces. These results were compared to flexible docking simulations of ANS molecules to the proteins, starting with the solution-state NMR structures of γS-WT and γS-G18V. RESULTS γS-G18V exhibits increased ANS fluorescence, suggesting increased exposed hydrophobic surface area. The specific residues involved in ANS binding were mapped by NMR chemical shift perturbation assays, revealing ANS binding sites in γS-G18V that are not present in γS-WT. Molecular docking predicts three binding sites that are specific to γS-G18V corresponding to the exposure of a hydrophobic cavity located at the interdomain interface, as well as two hydrophobic patches near a disordered loop containing solvent-exposed cysteines, all but one of which is buried in γS-WT. CONCLUSIONS Although both proteins display non-specific binding, more residues are involved in ANS binding to γS-G18V, and the affected residues are localized in the N-terminal domain and the nearby interdomain interface, proximal to the mutation site. GENERAL SIGNIFICANCE Characterization of changes in exposed hydrophobic surface area between wild-type and variant proteins can help elucidate the mechanisms of aggregation propensity and chaperone recognition, presented here in the context of cataract formation. Experimental data and simulations provide complementary views of the interactions between proteins and the small molecule probes commonly used to study aggregation. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Domarin Khago
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Eric K Wong
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Carolyn N Kingsley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
13
|
2D (1)H(N), (15)N Correlated NMR Methods at Natural Abundance for Obtaining Structural Maps and Statistical Comparability of Monoclonal Antibodies. Pharm Res 2015; 33:462-75. [PMID: 26453189 DOI: 10.1007/s11095-015-1802-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE High-resolution nuclear magnetic resonance spectroscopy (NMR) provides a robust approach for producing unique spectral signatures of protein higher order structure at atomic resolution. Such signatures can be used as a tool to establish consistency of protein folding for the assessment of monoclonal antibody (mAb) drug quality and comparability. METHODS Using the NIST monoclonal antibody (NISTmAb) and a commercial-sourced polyclonal antibody, both IgG1κ isotype, we apply 2D NMR methods at natural abundance for the acquisition and unbiased statistical analysis of (1)H(N) -(15)N correlated spectra of intact antibody (Ab) and protease-cleaved Fab and Fc fragments. RESULTS The study demonstrates the feasibility of applying 2D NMR techniques to Abs and the precision with which these methods can be used to map structure and establish comparability between samples at atomic resolution. CONCLUSIONS The statistical analyses suggests that, within the limit of detection, no significant structural differences are observed between the Fab and Fc domains of each respective intact Ab and its corresponding fragments. Discrimination between dissimilar species, such as between the Fab domains of both Abs or between the glycosylated and deglycosylated Fc domains, was further demonstrated. As such, these methods should find general utility for the assessment of mAb higher order structure.
Collapse
|
14
|
Gagné D, Narayanan C, Doucet N. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin. Protein Sci 2014; 24:525-33. [PMID: 25450558 DOI: 10.1002/pro.2613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 11/11/2022]
Abstract
Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40-42) negatively affects the catalytic activity but also increases the angiogenic activity. (15) N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | | | | |
Collapse
|
15
|
Keppler JK, Sönnichsen FD, Lorenzen PC, Schwarz K. Differences in heat stability and ligand binding among β-lactoglobulin genetic variants A, B and C using 1H NMR and fluorescence quenching. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1083-93. [DOI: 10.1016/j.bbapap.2014.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/25/2022]
|
16
|
Cembran A, Kim J, Gao J, Veglia G. NMR mapping of protein conformational landscapes using coordinated behavior of chemical shifts upon ligand binding. Phys Chem Chem Phys 2014; 16:6508-18. [PMID: 24604024 PMCID: PMC4117682 DOI: 10.1039/c4cp00110a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the linear trajectories of NMR chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues' response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein's approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, 6-155 Jackson Hall, MN 55455, USA.
| | | | | | | |
Collapse
|
17
|
Nucara A, Maselli P, Giliberti V, Carbonaro M. Epicatechin-induced conformational changes in β-lactoglobulin B monitored by FT-IR spectroscopy. SPRINGERPLUS 2013; 2:661. [PMID: 24353978 PMCID: PMC3866372 DOI: 10.1186/2193-1801-2-661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022]
Abstract
ABSTRACT The interaction between whey carrier protein β-lactoglobulin B and (-)-epicatechin, a major dietary flavonoid with a wide range of health-promoting biological activities, was investigated by Fourier transform infrared spectroscopy in physiological conditions. Amide I spectra of epicatechin - β-lactoglobulin complexes, in D2O buffer solutions, pD= 6.8, at molar ratios from 0.5:1 to 15:1, were measured by using a cell device specifically created. Changes in secondary structure elements at increasing epicatechin concentrations were quantified. Two different trends were observed for the intensities of β-sheet, random coil, and side chain contributions. At molar ratios ≤2 the β-exposed strand contributions (1625 cm(-1)) increased at the expence of the β-antiparallel sheet band (1637 cm(-1)). At molar ratios >2 the intensities of both β structures slightly decreased. The same behaviour was observed for the side chain contributions (band around 1610 ÷ 1620 cm(-1)). In addition, a conformational transition to a slightly opened structure, followed by aggregate formation at the highest molar ratios, were revealed. The results suggest that binding of epicatechin to β-lactoglobulin in physiological conditions occurs at the surface of the protein molecule, resulting in protein dissociation at molar ratios ≤2 with minor changes in secondary structure. This finding provides further evidence for the possibility of successful use of the protein as a carrier of flavonoids, epicatechin included.
Collapse
Affiliation(s)
- Alessandro Nucara
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | - Paola Maselli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | - Valeria Giliberti
- CNR-Istituto di Fotonica e Nanotecnologie, Via Cineto Romano 42, 00156 Rome, Italy
| | - Marina Carbonaro
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
18
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 1039] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
19
|
Kamal MZ, Ali J, Rao NM. Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1501-9. [PMID: 23639749 DOI: 10.1016/j.bbapap.2013.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 12/19/2022]
Abstract
8-Anilino-1-naphthalene sulfonate (ANS) and its covalent dimer bis-ANS are widely used for titrating hydrophobic surfaces of proteins. Interest to understand the nature of interaction of these dyes with proteins was seriously pursued. However as the techniques used in these studies varied, they often provided varied information regarding stoichiometry, binding affinity, actual binding sites etc. In the present study, we used combination of computation methods (docking and MD simulation) and experimental methods (mutations, steady-state and time-resolved fluorescence) to investigate bis-ANS interaction with Bacillus subtilis lipase. We identified seven binding sites for bis-ANS on lipase using computational docking and MD simulation and verified these data using a set of single amino acid substituted mutants. Docking and MD simulation studies indicated that the binding sites were various indentations and grooves on protein surface with hydrophobic characteristics. Both hydrophobic and ionic interactions were involved in each of these binding events. We further examine the fluorescence properties of bis-ANS bound to mutant lipases that either gained or lost a binding site. Our results indicated that neither gain nor loss of single binding site caused any change in fluorescence lifetimes (and their relative amplitudes) of mutant lipase-bound bis-ANS in comparison to that bound to wild type; hence, it suggested that nature of bis-ANS binding to each of the sites in lipase was very similar.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.
| | | | | |
Collapse
|