1
|
Julió Plana L, Martinez Grundman JE, Estrin DA, Lecomte JTJ, Capece L. Distal lysine (de)coordination in the algal hemoglobin THB1: A combined computer simulation and experimental study. J Inorg Biochem 2021; 220:111455. [PMID: 33882423 DOI: 10.1016/j.jinorgbio.2021.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/26/2022]
Abstract
THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime E Martinez Grundman
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Control of distal lysine coordination in a monomeric hemoglobin: A role for heme peripheral interactions. J Inorg Biochem 2021; 219:111437. [PMID: 33892380 DOI: 10.1016/j.jinorgbio.2021.111437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/25/2022]
Abstract
THB1 is a monomeric truncated hemoglobin (TrHb) found in the cytoplasm of the green alga Chlamydomonas reinhardtii. The canonical heme coordination scheme in hemoglobins is a proximal histidine ligand and an open distal site. In THB1, the latter site is occupied by Lys53, which is likely to facilitate Fe(II)/Fe(III) redox cycling but hinders dioxygen binding, two features inherent to the NO dioxygenase activity of the protein. TrHb surveys show that a lysine at a position aligning with Lys53 is an insufficient determinant of coordination, and in this study, we sought to identify factors controlling lysine affinity for the heme iron. We solved the "Lys-off" X-ray structure of THB1, represented by the cyanide adduct of the Fe(III) protein, and hypothesized that interactions that differ between the known "Lys-on" structure and the Lys-off structure participate in the control of Lys53 affinity for the heme iron. We applied an experimental approach (site-directed mutagenesis, heme modification, pH titrations in the Fe(III) and Fe(II) states) and a computational approach (MD simulations in the Fe(II) state) to assess the role of heme propionate-protein interactions, distal helix capping, and the composition of the distal pocket. All THB1 modifications resulted in a weakening of lysine affinity and affected the coupling between Lys53 proton binding and heme redox potential. The results supported the importance of specific heme peripheral interactions for the pH stability of iron coordination and the ability of the protein to undergo redox reactions.
Collapse
|
3
|
Astegno A, Conter C, Bertoldi M, Dominici P. Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules 2020; 10:E1615. [PMID: 33260415 PMCID: PMC7761212 DOI: 10.3390/biom10121615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana are hexacoordinate heme-proteins that likely have different biological roles, in view of diverse tissue localization, expression pattern, and ligand binding properties. Herein, we expand upon previous biophysical studies on these isoforms, focusing on their oligomeric states and circular dichroism (CD) characteristics. We found that AHb1 exists in solution in a concentration-dependent monomer-dimer equilibrium, while AHb2 is present only as a monomer. The quaternary structure of AHb1 affects its degree of hexacoordination with the formation of the dimer that enhances pentacoordination. Accordingly, the mutant of a conserved residue within the dimeric interface, AHb1-T45A, which is mostly monomeric in solution, has an equilibrium that is shifted toward a hexacoordinate form compared to the wild-type protein. CD studies further support differences in the globin's structure and heme moiety. The Soret CD spectra for AHb2 are opposite in sense to those for AHb1, reflecting different patterns of heme-protein side chain contacts in the two proteins. Moreover, the smaller contribution of the heme to the near-UV CD in AHb2 compared to AHb1 suggests a weaker heme-protein association in AHb2. Our data corroborate the structural diversity of AHb1 and AHb2 and confirm the leghemoglobin-like structural properties of AHb2.
Collapse
Affiliation(s)
- Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy;
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| |
Collapse
|
4
|
Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, Rivalta I, Ho J, Batista VS. Eigenvector centrality for characterization of protein allosteric pathways. Proc Natl Acad Sci U S A 2018; 115:E12201-E12208. [PMID: 30530700 PMCID: PMC6310864 DOI: 10.1073/pnas.1810452115] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Heidi P Hendrickson
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
- Department of Chemistry, Lafayette College, Easton, PA 18042
| | - Rhitankar Pal
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France;
- Dipartimento di Chimica Industriale "Toso Montanari," Università degli Studi di Bologna, Viale del Risorgimento, 4I-40136 Bologna, Italy
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| |
Collapse
|
5
|
Julió Plana L, Nadra AD, Estrin DA, Luque FJ, Capece L. Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations. J Chem Inf Model 2018; 59:441-452. [PMID: 30516994 DOI: 10.1021/acs.jcim.8b00840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins are sensitive to temperature, and abrupt changes in the normal temperature conditions can have a profound impact on both structure and function, leading to protein unfolding. However, the adaptation of certain organisms to extreme conditions raises questions about the structural features that permit the structure and function of proteins to be preserved under these adverse conditions. To gain insight into the molecular basis of protein thermostability in the globin family, we have examined three representative examples: human neuroglobin, horse heart myoglobin, and Drosophila hemoglobin, which differ in their melting temperatures and coordination states of the heme iron in the absence of external ligands. In order to elucidate the possible mechanisms that govern the thermostability of these proteins, microsecond-scale classical molecular dynamics simulations were performed at different temperatures. Structural fluctuations and essential dynamics were analyzed, indicating that the flexibility of the CD region, which includes the two short C and D helixes and the connecting CD loop, is directly related to the thermostability. We observed that a larger inherent flexibility of the protein produces higher thermostability, probably concentrating the thermal fluctuations observed at high temperature in flexible regions, preventing unfolding. Globally, the results of this work improve our understanding of thermostability in the globin family.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| | - Alejandro D Nadra
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/IQUIBICEN-CONICET , C1428EGA Buenos Aires , Argentina
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Campus Torribera , 08921 Santa Coloma de Gramenet , Spain.,Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08028 Barcelona , Spain
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
6
|
Nategholeslam M, Gray CG, Tomberli B. Stiff Spring Approximation Revisited: Inertial Effects in Nonequilibrium Trajectories. J Phys Chem B 2017; 121:391-403. [DOI: 10.1021/acs.jpcb.6b08701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - C. G. Gray
- Guelph-Waterloo
Physics Institute and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bruno Tomberli
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Physics, Capilano University, North Vancouver, British
Columbia V7J 3H5, Canada
| |
Collapse
|
7
|
Ascenzi P, Sbardella D, Fiocchetti M, Santucci R, Coletta M. NO2−-mediated nitrosylation of ferrous microperoxidase-11. J Inorg Biochem 2015; 153:121-127. [DOI: 10.1016/j.jinorgbio.2015.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
|
8
|
Nategholeslam M, Gray CG, Tomberli B. Implementation of the Forward–Reverse Method for Calculating the Potential of Mean Force Using a Dynamic Restraining Protocol. J Phys Chem B 2014; 118:14203-14. [DOI: 10.1021/jp504942t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mostafa Nategholeslam
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - C. G. Gray
- Guelph-Waterloo
Physics Institute and Department of Physics, University of Guelph, Guelph, Ontario, Canada
| | - Bruno Tomberli
- Department
of Physics, Capilano University, North Vancouver, British
Columbia, Canada
| |
Collapse
|
9
|
Spyrakis F, Lucas F, Bidon-Chanal A, Viappiani C, Guallar V, Luque FJ. Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1957-67. [PMID: 23583621 DOI: 10.1016/j.bbapap.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure-function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1)→Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|