1
|
Roterman I, Stapor K, Konieczny L. Role of environmental specificity in CASP results. BMC Bioinformatics 2023; 24:425. [PMID: 37950210 PMCID: PMC10638730 DOI: 10.1186/s12859-023-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Prediction) competition. However, the question of the mechanism behind the protein folding process itself remains unanswered. Correctly predicting the structure also does not solve the problem of, for example, amyloid proteins, where a polypeptide chain with an unaltered sequence adopts a different 3D structure. RESULTS This work was an attempt at explaining the structural variation by considering the contribution of the environment to protein structuring. The application of the fuzzy oil drop (FOD) model to assess the validity of the selected models provided in the CASP13, CASP14 and CASP15 projects reveals the need for an environmental factor to determine the 3D structure of proteins. Consideration of the external force field in the form of polar water (Fuzzy Oil Drop) and a version modified by the presence of the hydrophobic compounds, FOD-M (FOD-Modified) reveals that the protein folding process is environmentally dependent. An analysis of selected models from the CASP competitions indicates the need for structure prediction as dependent on the consideration of the protein folding environment. CONCLUSIONS The conditions governed by the environment direct the protein folding process occurring in a certain environment. Therefore, the variation of the external force field should be taken into account in the models used in protein structure prediction.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Faculty of Automatic, Electronics and Computer Science, Department of Applied, Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Leszek Konieczny
- Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
2
|
Peng CX, Zhou XG, Zhang GJ. De novo Protein Structure Prediction by Coupling Contact With Distance Profile. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:395-406. [PMID: 32750861 DOI: 10.1109/tcbb.2020.3000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
De novo protein structure prediction is a challenging problem that requires both an accurate energy function and an efficient conformation sampling method. In this study, a de novo structure prediction method, named CoDiFold, is proposed. In CoDiFold, contacts and distance profiles are organically combined into the Rosetta low-resolution energy function to improve the accuracy of energy function. As a result, the correlation between energy and root mean square deviation (RMSD) is improved. In addition, a population-based multi-mutation strategy is designed to balance the exploration and exploitation of conformation space sampling. The average RMSD of the models generated by the proposed protocol is decreased by 49.24 and 45.21 percent in the test set with 43 proteins compared with those of Rosetta and QUARK de novo protocols, respectively. The results also demonstrate that the structures predicted by proposed CoDiFold are comparable to the state-of-the-art methods for the 10 FM targets of CASP13. The source code and executable versions are freely available at http://github.com/iobio-zjut/CoDiFold.
Collapse
|
3
|
Bottino GF, Ferrari AJR, Gozzo FC, Martínez L. Structural discrimination analysis for constraint selection in protein modeling. Bioinformatics 2021; 37:3766-3773. [PMID: 34086840 DOI: 10.1093/bioinformatics/btab425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein structure modeling can be improved by the use of distance constraints between amino acid residues, provided such data reflects-at least partially-the native tertiary structure of the target system. In fact, only a small subset of the native contact map is necessary to successfully drive the model conformational search, so one important goal is to obtain the set of constraints with the highest true-positive rate, lowest redundancy, and greatest amount of information. In this work, we introduce a constraint evaluation and selection method based on the point-biserial correlation coefficient, which utilizes structural information from an ensemble of models to indirectly measure the power of each constraint in biasing the conformational search towards consensus structures. RESULTS Residue contact maps obtained by direct coupling analysis are systematically improved by means of discriminant analysis, reaching in some cases accuracies often seen only in modern deep-learning based approaches. When combined with an iterative modeling workflow, the proposed constraint classification optimizes the selection of the constraint set and maximizes the probability of obtaining successful models. The use of discriminant analysis for the valorization of the information of constraint data sets is a general concept with possible applications to other constraint types and modeling problems. AVAILABILITY AND IMPLEMENTATION scripts and procedures to implement the methodology presented herein are available at https://github.com/m3g/2021_Bottino_Biserial. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guilherme F Bottino
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Allan J R Ferrari
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
4
|
Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin AM. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age. Proteins 2018; 86 Suppl 1:51-66. [PMID: 29071738 PMCID: PMC5820169 DOI: 10.1002/prot.25407] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Following up on the encouraging results of residue-residue contact prediction in the CASP11 experiment, we present the analysis of predictions submitted for CASP12. The submissions include predictions of 34 groups for 38 domains classified as free modeling targets which are not accessible to homology-based modeling due to a lack of structural templates. CASP11 saw a rise of coevolution-based methods outperforming other approaches. The improvement of these methods coupled to machine learning and sequence database growth are most likely the main driver for a significant improvement in average precision from 27% in CASP11 to 47% in CASP12. In more than half of the targets, especially those with many homologous sequences accessible, precisions above 90% were achieved with the best predictors reaching a precision of 100% in some cases. We furthermore tested the impact of using these contacts as restraints in ab initio modeling of 14 single-domain free modeling targets using Rosetta. Adding contacts to the Rosetta calculations resulted in improvements of up to 26% in GDT_TS within the top five structures.
Collapse
Affiliation(s)
- Joerg Schaarschmidt
- Faculty of Science ‐ ChemistryComputational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| | | | | | - Alexandre M.J.J. Bonvin
- Faculty of Science ‐ ChemistryComputational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Buchan DWA, Jones DT. Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins 2017; 86 Suppl 1:78-83. [PMID: 28901583 PMCID: PMC5836854 DOI: 10.1002/prot.25379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
In this paper, we present the results for the MetaPSICOV2 contact prediction server in the CASP12 community experiment (http://predictioncenter.org). Over the 35 assessed Free Modelling target domains the MetaPSICOV2 server achieved a mean precision of 43.27%, a substantial increase relative to the server's performance in the CASP11 experiment. In the following paper, we discuss improvements to the MetaPSICOV2 server, covering both changes to the neural network and attempts to integrate contact predictions on a domain basis into the prediction pipeline. We also discuss some limitations in the CASP12 assessment which may have overestimated the performance of our method.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, London, UK
| | - David T Jones
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
6
|
Modi V, Xu Q, Adhikari S, Dunbrack RL. Assessment of template-based modeling of protein structure in CASP11. Proteins 2016; 84 Suppl 1:200-20. [PMID: 27081927 DOI: 10.1002/prot.25049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022]
Abstract
We present the assessment of predictions submitted in the template-based modeling (TBM) category of CASP11 (Critical Assessment of Protein Structure Prediction). Model quality was judged on the basis of global and local measures of accuracy on all atoms including side chains. The top groups on 39 human-server targets based on model 1 predictions were LEER, Zhang, LEE, MULTICOM, and Zhang-Server. The top groups on 81 targets by server groups based on model 1 predictions were Zhang-Server, nns, BAKER-ROSETTASERVER, QUARK, and myprotein-me. In CASP11, the best models for most targets were equal to or better than the best template available in the Protein Data Bank, even for targets with poor templates. The overall performance in CASP11 is similar to the performance of predictors in CASP10 with slightly better performance on the hardest targets. For most targets, assessment measures exhibited bimodal probability density distributions. Multi-dimensional scaling of an RMSD matrix for each target typically revealed a single cluster with models similar to the target structure, with a mode in the GDT-TS density between 40 and 90, and a wide distribution of models highly divergent from each other and from the experimental structure, with density mode at a GDT-TS value of ∼20. The models in this peak in the density were either compact models with entirely the wrong fold, or highly non-compact models. The results argue for a density-driven approach in future CASP TBM assessments that accounts for the bimodal nature of these distributions instead of Z scores, which assume a unimodal, Gaussian distribution. Proteins 2016; 84(Suppl 1):200-220. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vivek Modi
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, 19111
| | - Qifang Xu
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, 19111
| | - Sam Adhikari
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, 19111
| | - Roland L Dunbrack
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, 19111.
| |
Collapse
|
7
|
Schneider M, Belsom A, Rappsilber J, Brock O. Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11. Proteins 2016; 84 Suppl 1:152-63. [PMID: 26945814 PMCID: PMC5042049 DOI: 10.1002/prot.25028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/26/2022]
Abstract
Hybrid approaches combine computational methods with experimental data. The information contained in the experimental data can be leveraged to probe the structure of proteins otherwise elusive to computational methods. Compared with computational methods, the structures produced by hybrid methods exhibit some degree of experimental validation. In spite of these advantages, most hybrid methods have not yet been validated in blind tests, hampering their development. Here, we describe the first blind test of a specific cross-link based hybrid method in CASP. This blind test was coordinated by the CASP organizers and utilized a novel, high-density cross-linking/mass-spectrometry (CLMS) approach that is able to collect high-density CLMS data in a matter of days. This experimental protocol was developed in the Rappsilber laboratory. This approach exploits the chemistry of a highly reactive, photoactivatable cross-linker to produce an order of magnitude more cross-links than homobifunctional cross-linkers. The Rappsilber laboratory generated experimental CLMS data based on this protocol, submitted the data to the CASP organizers which then released this data to the CASP11 prediction groups in a separate, CLMS assisted modeling experiment. We did not observe a clear improvement of assisted models, presumably because the properties of the CLMS data-uncertainty in cross-link identification and residue-residue assignment, and uneven distribution over the protein-were largely unknown to the prediction groups and their approaches were not yet tailored to this kind of data. We also suggest modifications to the CLMS-CASP experiment and discuss the importance of rigorous blind testing in the development of hybrid methods. Proteins 2016; 84(Suppl 1):152-163. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Schneider
- Robotics and Biology Laboratory, Technische Universität Berlin, 10587, Berlin, Germany
| | - Adam Belsom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom. .,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany.
| | - Oliver Brock
- Robotics and Biology Laboratory, Technische Universität Berlin, 10587, Berlin, Germany.
| |
Collapse
|
8
|
Kinch LN, Li W, Monastyrskyy B, Kryshtafovych A, Grishin NV. Assessment of CASP11 contact-assisted predictions. Proteins 2016; 84 Suppl 1:164-80. [PMID: 26889875 DOI: 10.1002/prot.25020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/05/2016] [Accepted: 02/14/2016] [Indexed: 12/26/2022]
Abstract
We present an overview of contact-assisted predictions in the eleventh round of critical assessment of protein structure prediction (CASP11), which included four categories: predicted contacts (Tp), correct contacts (Tc), simulated sparse NMR contacts (Ts), and cross-linking contacts (Tx). Comparison of assisted to unassisted model quality highlighted a relatively poor overall performance in CASP11 using predicted Tp and crosslinked Tx contact information. However, average model quality significantly improved in the correct Tc and simulated NMR Ts categories for most targets, where maximum improvement of unassisted models reached an impressive 70 GDT_TS. Comparison of the performance in the correct Tc category to CASP10 suggested the improvement in CASP11 model quality originated from an increased number of provided contacts per target. Group rankings based on a combination of scores used in the CASP11 free modeling (FM) assessment for each category highlight four top-performing groups, with three from the Lee lab and one from the Baker lab. We used the overall performance of these groups in each category to develop hypotheses for their relative outperformance in the correct Tc and simulated NMR Ts categories, which stemmed from the fraction of correct contacts provided (correct Tc category) and a reduced fraction of correct contacts offset by an increased coverage of the correct contacts (simulated NMR Ts category). Proteins 2016; 84(Suppl 1):164-180. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050.
| | - Wenlin Li
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050.,Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050
| | | | | | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050.,Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050.,Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9050
| |
Collapse
|
9
|
Kinch LN, Li W, Monastyrskyy B, Kryshtafovych A, Grishin NV. Evaluation of free modeling targets in CASP11 and ROLL. Proteins 2016; 84 Suppl 1:51-66. [PMID: 26677002 DOI: 10.1002/prot.24973] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/12/2015] [Indexed: 12/25/2022]
Abstract
We present an assessment of 'template-free modeling' (FM) in CASP11and ROLL. Community-wide server performance suggested the use of automated scores similar to previous CASPs would provide a good system of evaluating performance, even in the absence of comprehensive manual assessment. The CASP11 FM category included several outstanding examples, including successful prediction by the Baker group of a 256-residue target (T0806-D1) that lacked sequence similarity to any existing template. The top server model prediction by Zhang's Quark, which was apparently selected and refined by several manual groups, encompassed the entire fold of target T0837-D1. Methods from the same two groups tended to dominate overall CASP11 FM and ROLL rankings. Comparison of top FM predictions with those from the previous CASP experiment revealed progress in the category, particularly reflected in high prediction accuracy for larger protein domains. FM prediction models for two cases were sufficient to provide functional insights that were otherwise not obtainable by traditional sequence analysis methods. Importantly, CASP11 abstracts revealed that alignment-based contact prediction methods brought about much of the CASP11 progress, producing both of the functionally relevant models as well as several of the other outstanding structure predictions. These methodological advances enabled de novo modeling of much larger domain structures than was previously possible and allowed prediction of functional sites. Proteins 2016; 84(Suppl 1):51-66. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050.
| | - Wenlin Li
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050
| | - Bohdan Monastyrskyy
- Genome Center, University of California, 451 Health Sciences Drive, Davis, California 95616
| | - Andriy Kryshtafovych
- Genome Center, University of California, 451 Health Sciences Drive, Davis, California 95616
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050.,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9050
| |
Collapse
|
10
|
Heinze S, Putnam DK, Fischer AW, Kohlmann T, Weiner BE, Meiler J. CASP10-BCL::Fold efficiently samples topologies of large proteins. Proteins 2015; 83:547-63. [PMID: 25581562 DOI: 10.1002/prot.24733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022]
Abstract
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein.
Collapse
Affiliation(s)
- Sten Heinze
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37240
| | | | | | | | | | | |
Collapse
|
11
|
Raval A, Piana S, Eastwood MP, Shaw DE. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Sci 2015; 25:19-29. [PMID: 26266489 PMCID: PMC4815320 DOI: 10.1002/pro.2770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred.
Collapse
Affiliation(s)
- Alpan Raval
- D. E. Shaw Research, New York, New York, 10036
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, New York, 10036.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| |
Collapse
|
12
|
Adhikari B, Bhattacharya D, Cao R, Cheng J. CONFOLD: Residue-residue contact-guided ab initio protein folding. Proteins 2015; 83:1436-49. [PMID: 25974172 PMCID: PMC4509844 DOI: 10.1002/prot.24829] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/11/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022]
Abstract
Predicted protein residue-residue contacts can be used to build three-dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three-dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two-stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β-sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM-score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM-score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/.
Collapse
Affiliation(s)
- Badri Adhikari
- Department of Computer Science, University of Missouri, Columbia, MO 65211 USA
| | | | - Renzhi Cao
- Department of Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
13
|
Yang KY, Yang B, Lin ZJ. Computational Exploration of Conformations of Glycine-Arginine and a Deduced Model on Global Minimum Configurations of Dipeptides in Gas Phase. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1410197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Konopka BM, Ciombor M, Kurczynska M, Kotulska M. Automated procedure for contact-map-based protein structure reconstruction. J Membr Biol 2014; 247:409-20. [PMID: 24682239 PMCID: PMC3983884 DOI: 10.1007/s00232-014-9648-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/04/2014] [Indexed: 11/25/2022]
Abstract
Knowledge of the three-dimensional structures of ion channels allows for modeling their conductivity characteristics using biophysical models and can lead to discovering their cellular functionality. Recent studies show that quality of structure predictions can be significantly improved using protein contact site information. Therefore, a number of procedures for protein structure prediction based on their contact-map have been proposed. Their comparison is difficult due to different methodologies used for validation. In this work, a Contact Map-to-Structure pipeline (C2S_pipeline) for contact-based protein structure reconstruction is designed and validated. The C2S_pipeline can be used to reconstruct monomeric and multimeric proteins. The median RMSD of structures obtained during validation on a representative set of protein structures, equaled 5.27 Å, and the best structure was reconstructed with RMSD of 1.59 Å. The validation is followed by a detailed case study on the KcsA ion channel. Models of KcsA are reconstructed based on different portions of contact site information. Structural feature analysis of acquired KcsA models is supported by a thorough analysis of electrostatic potential distributions inside the channels. The study shows that electrostatic parameters are correlated with structural quality of models. Therefore, they can be used to discriminate between high and low quality structures. We show that 30 % of contact information is needed to obtain accurate structures of KcsA, if contacts are selected randomly. This number increases to 70 % in case of erroneous maps in which the remaining contacts or non-contacts are changed to the opposite. Furthermore, the study reveals that local reconstruction accuracy is correlated with the number of contacts in which amino acid are involved. This results in higher reconstruction accuracy in the structure core than peripheral regions.
Collapse
Affiliation(s)
- Bogumil M Konopka
- Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | | | | | | |
Collapse
|
15
|
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)--round x. Proteins 2014. [PMID: 24344053 DOI: 10.1002/prot.24452.critical] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.
Collapse
Affiliation(s)
- John Moult
- Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, Maryland, 20850
| | | | | | | | | |
Collapse
|
16
|
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)--round x. Proteins 2014; 82 Suppl 2:1-6. [PMID: 24344053 PMCID: PMC4394854 DOI: 10.1002/prot.24452] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/28/2022]
Abstract
This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.
Collapse
Affiliation(s)
- John Moult
- Institute for Bioscience and Biotechnology Research, and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, Maryland 20850
| | | | | | - Torsten Schwede
- University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anna Tramontano
- Department of Physics and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
17
|
Abstract
This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.
Collapse
|