1
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. Appl Environ Microbiol 2024; 90:e0054823. [PMID: 38126750 PMCID: PMC10807460 DOI: 10.1128/aem.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Departments of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533529. [PMID: 36993441 PMCID: PMC10055284 DOI: 10.1101/2023.03.20.533529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Seemingly redundant proteins can be important for enabling an organism to cope with environmental stressors. We sought to evaluate the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of B. subtilis PBPs change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are preferred for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly redundant periplasmic enzymes.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Departments of Medicinal Chemistry, Biochemistry, Molecular Biology and Biophysics, and Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
3
|
Flanders PL, Contreras-Martel C, Brown NW, Shirley JD, Martins A, Nauta KN, Dessen A, Carlson EE, Ambrose EA. Combined Structural Analysis and Molecular Dynamics Reveal Penicillin-Binding Protein Inhibition Mode with β-Lactones. ACS Chem Biol 2022; 17:3110-3120. [PMID: 36173746 PMCID: PMC10057605 DOI: 10.1021/acschembio.2c00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Lactam antibiotics comprise one of the most widely used therapeutic classes to combat bacterial infections. This general scaffold has long been known to inhibit bacterial cell wall biosynthesis by inactivating penicillin-binding proteins (PBPs); however, bacterial resistance to β-lactams is now widespread, and new strategies are urgently needed to target PBPs and other proteins involved in bacterial cell wall formation. A key requirement in the identification of strategies to overcome resistance is a deeper understanding of the roles of the PBPs and their associated proteins during cell growth and division, such as can be obtained with the use of selective chemical probes. Probe development has typically depended upon known PBP inhibitors, which have historically been thought to require a negatively charged moiety that mimics the C-terminus of the PBP natural peptidoglycan substrate, d-Ala-d-Ala. However, we have identified a new class of β-lactone-containing molecules that interact with PBPs, often in an isoform-specific manner, and do not incorporate this C-terminal mimetic. Here, we report a series of structural biology experiments and molecular dynamics simulations that we utilized to evaluate specific binding modes of this novel PBP inhibitor class. In this work, we obtained <2 Å resolution X-ray structures of four β-lactone probes bound to PBP1b from Streptococcus pneumoniae. Despite their diverging recognition modes beyond the site of covalent modification, these four probes all efficiently labeled PBP1b, as well as other PBPs from S. pneumoniae. From these structures, we analyzed protein-ligand interactions and characterized the β-lactone-bound active sites using in silico mutagenesis and molecular dynamics. Our approach has clarified the dynamic interaction profile in this series of ligands, expanding the understanding of PBP inhibitor binding.
Collapse
Affiliation(s)
- Parker L Flanders
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| | - Nathaniel W Brown
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Alexandre Martins
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| | - Kelsie N Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Andréa Dessen
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States.,Department of Pharmacology, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States
| | - Elizabeth A Ambrose
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Minnesota Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Nagar M, Kumar H, Bearne SL. A platform for chemical modification of mandelate racemase: characterization of the C92S/C264S and γ-thialysine 166 variants. Protein Eng Des Sel 2018; 31:135-145. [PMID: 29850884 DOI: 10.1093/protein/gzy011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/03/2018] [Indexed: 11/14/2022] Open
Abstract
Mandelate racemase (MR) serves as a paradigm for our understanding of enzyme-catalyzed deprotonation of a carbon acid substrate. To facilitate structure-function studies on MR using non-natural amino acid substitutions, we engineered the Cys92Ser/Cys264Ser variant (dmMR) as a platform for introducing Cys residues at specific locations for subsequent covalent modification. While the highly reactive thiol of Cys furnishes a site for chemical modification, site-specificity requires that other Cys residues be non-reactive or replaced by a non-reactive amino acid, especially if chemical modification is conducted under denaturing conditions. The catalytic efficiency of dmMR is reduced only ~2-fold relative to wild-type MR, making dmMR a viable platform for the site-specific introduction of Cys. As an example, the inactive Lys166Cys variant of dmMR was treated with ethylenimine under denaturing conditions to replace the Brønsted acid-base catalyst Lys 166 with the non-natural amino acid γ-thialysine. Comparison of the pH-activity profiles of dmMR and the active γ-thialysine variant revealed a reduction in the pKa for the side chain amino group of ~0.4 units for the latter variant. Unlike wild-type MR for which diffusion is partially rate-limiting, dmMR and the γ-thialysine variant showed no dependence on the solvent viscosity suggesting that the chemical step is fully rate-limiting.
Collapse
Affiliation(s)
- Mitesh Nagar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Himank Kumar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Chemistry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. FEBS J 2017; 285:87-100. [PMID: 29095570 DOI: 10.1111/febs.14315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023]
Abstract
The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. DATABASE Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kathryn G Lethbridge
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
6
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
7
|
Kim MO, McCammon JA. Computation of pH-dependent binding free energies. Biopolymers 2016; 105:43-9. [PMID: 26202905 PMCID: PMC4623928 DOI: 10.1002/bip.22702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023]
Abstract
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes.
Collapse
Affiliation(s)
- M. Olivia Kim
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Andrew McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
- National Biomedical Computation Resource, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Otten C, De Benedetti S, Gaballah A, Bühl H, Klöckner A, Brauner J, Sahl HG, Henrichfreise B. Co-solvents as stabilizing agents during heterologous overexpression in Escherichia coli - application to chlamydial penicillin-binding protein 6. PLoS One 2015; 10:e0122110. [PMID: 25849314 PMCID: PMC4388811 DOI: 10.1371/journal.pone.0122110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/17/2015] [Indexed: 01/29/2023] Open
Abstract
Heterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself. We describe an easy to use lab-scale method to avoid formation of inclusion bodies. The method systematically combines use of co-solvents, usually applied for in vitro stabilization of biologicals in biopharmaceutical formulation, and periplasmic expression and can be completed in one week using standard equipment in any life science laboratory. Demonstrating the unique power of our method, we overproduced and purified for the first time an active chlamydial penicillin-binding protein, demonstrated its function as penicillin sensitive DD-carboxypeptidase and took a major leap towards understanding the "chlamydial anomaly."
Collapse
Affiliation(s)
- Christian Otten
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- * E-mail: (BH); (CO)
| | | | - Ahmed Gaballah
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Henrike Bühl
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Anna Klöckner
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Jarryd Brauner
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- * E-mail: (BH); (CO)
| |
Collapse
|
9
|
Grigorenko BL, Khrenova MG, Nilov DK, Nemukhin AV, Švedas VK. Catalytic Cycle of Penicillin Acylase from Escherichia coli: QM/MM Modeling of Chemical Transformations in the Enzyme Active Site upon Penicillin G Hydrolysis. ACS Catal 2014. [DOI: 10.1021/cs5002898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bella L. Grigorenko
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Maria G. Khrenova
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry K. Nilov
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Alexander V. Nemukhin
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Vytas K. Švedas
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Faculty
of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|