1
|
Shirali A, Stebliankin V, Karki U, Shi J, Chapagain P, Narasimhan G. A comprehensive survey of scoring functions for protein docking models. BMC Bioinformatics 2025; 26:25. [PMID: 39844036 PMCID: PMC11755896 DOI: 10.1186/s12859-024-05991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND While protein-protein docking is fundamental to our understanding of how proteins interact, scoring protein-protein complex conformations is a critical component of successful docking programs. Without accurate and efficient scoring functions to differentiate between native and non-native binding complexes, the accuracy of current docking tools cannot be guaranteed. Although many innovative scoring functions have been proposed, a good scoring function for docking remains elusive. Deep learning models offer alternatives to using explicit empirical or mathematical functions for scoring protein-protein complexes. RESULTS In this study, we perform a comprehensive survey of the state-of-the-art scoring functions by considering the most popular and highly performant approaches, both classical and deep learning-based, for scoring protein-protein complexes. The methods were also compared based on their runtime as it directly impacts their use in large-scale docking applications. CONCLUSIONS We evaluate the strengths and weaknesses of classical and deep learning-based approaches across seven public and popular datasets to aid researchers in understanding the progress made in this field.
Collapse
Affiliation(s)
- Azam Shirali
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Vitalii Stebliankin
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Ukesh Karki
- Department of Physics, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Jimeng Shi
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, 33199, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, 33199, USA.
| |
Collapse
|
2
|
Soler MA, Yakout RBA, Ozkilinc O, Esposito G, Rocchia W, Klein C, Fogolari F. Bluues_cplx: Electrostatics at Protein-Protein and Protein-Ligand Interfaces. Molecules 2025; 30:159. [PMID: 39795215 PMCID: PMC11722155 DOI: 10.3390/molecules30010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
(1) Background: Electrostatics plays a capital role in protein-protein and protein-ligand interactions. Implicit solvent models are widely used to describe electrostatics and complementarity at interfaces. Electrostatic complementarity at the interface is not trivial, involving surface potentials rather than the charges of surfacial contacting atoms. (2) Results: The program bluues_cplx, here used in conjunction with the software NanoShaper to compute molecular surfaces, has been used to compute the electrostatic properties of 756 protein-protein and 189 protein-ligand complexes along with the corresponding isolated molecules. (3) Methods: The software we make available here uses Generalized Born (GB) radii, computed by a molecular surface integral, to output several descriptors of electrostatics at protein (and in general, molecular) interfaces. We illustrate the usage of the software by analyzing a dataset of protein-protein and protein-ligand complexes, thus extending and refining previous analyses of electrostatic complementarity at protein interfaces. (4) Conclusions: The complete analysis of a molecular complex is performed in tens of seconds on a PC, and the results include the list of surfacial contacting atoms, their charges and Pearson correlation coefficient, the list of contacting surface points with the electrostatic potential (computed for the isolated molecules) and Pearson correlation coefficient, the electrostatic and hydrophobic free energy with different contributions for the isolated molecules, their complex and the difference for all terms. The software is readily usable for any molecular complex in solution.
Collapse
Affiliation(s)
- Miguel Angel Soler
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF), University of Udine, 33100 Udine, Italy; (M.A.S.); (O.O.)
| | - Rayyan Bassem Adel Yakout
- Institute of Biotechnology, IMC Krems University of Applied Sciences, 3500 Krems an der Donau, Austria; (R.B.A.Y.); (C.K.)
| | - Ozge Ozkilinc
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF), University of Udine, 33100 Udine, Italy; (M.A.S.); (O.O.)
| | - Gennaro Esposito
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Walter Rocchia
- Computational MOdelling of NanosCalE and BioPhysical SysTems CONCEPT Lab, Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy;
| | - Christian Klein
- Institute of Biotechnology, IMC Krems University of Applied Sciences, 3500 Krems an der Donau, Austria; (R.B.A.Y.); (C.K.)
| | - Federico Fogolari
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF), University of Udine, 33100 Udine, Italy; (M.A.S.); (O.O.)
| |
Collapse
|
3
|
Le HN, de Freitas MV, Antunes DA. Strengths and limitations of web servers for the modeling of TCRpMHC complexes. Comput Struct Biotechnol J 2024; 23:2938-2948. [PMID: 39104710 PMCID: PMC11298609 DOI: 10.1016/j.csbj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges that must be addressed in order to support the future application of these tools for TCR engineering and computer-aided design of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Hoa Nhu Le
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| | | | - Dinler Amaral Antunes
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| |
Collapse
|
4
|
McFee M, Kim J, Kim PM. EuDockScore: Euclidean graph neural networks for scoring protein-protein interfaces. Bioinformatics 2024; 40:btae636. [PMID: 39441796 PMCID: PMC11543620 DOI: 10.1093/bioinformatics/btae636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
MOTIVATION Protein-protein interactions are essential for a variety of biological phenomena including mediating biochemical reactions, cell signaling, and the immune response. Proteins seek to form interfaces which reduce overall system energy. Although determination of single polypeptide chain protein structures has been revolutionized by deep learning techniques, complex prediction has still not been perfected. Additionally, experimentally determining structures is incredibly resource and time expensive. An alternative is the technique of computational docking, which takes the solved individual structures of proteins to produce candidate interfaces (decoys). Decoys are then scored using a mathematical function that assess the quality of the system, known as scoring functions. Beyond docking, scoring functions are a critical component of assessing structures produced by many protein generative models. Scoring models are also used as a final filtering in many generative deep learning models including those that generate antibody binders, and those which perform docking. RESULTS In this work, we present improved scoring functions for protein-protein interactions which utilizes cutting-edge Euclidean graph neural network architectures, to assess protein-protein interfaces. These Euclidean docking score models are known as EuDockScore, and EuDockScore-Ab with the latter being antibody-antigen dock specific. Finally, we provided EuDockScore-AFM a model trained on antibody-antigen outputs from AlphaFold-Multimer (AFM) which proves useful in reranking large numbers of AFM outputs. AVAILABILITY AND IMPLEMENTATION The code for these models is available at https://gitlab.com/mcfeemat/eudockscore.
Collapse
Affiliation(s)
- Matthew McFee
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jisun Kim
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Philip M Kim
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Computer Science, The University of Toronto, Toronto, ON M5S 2E4, Canada
| |
Collapse
|
5
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations. Nat Biotechnol 2024:10.1038/s41587-024-02428-4. [PMID: 39448882 DOI: 10.1038/s41587-024-02428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
To assist the translation of genetic findings to disease pathobiology and therapeutics discovery, we present an ensemble deep learning framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that predicts protein-binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms to generate comprehensive structurally informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods and experimentally validate its predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces and explore their impact on disease prognosis and drug responses. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from analysis of approximately 11,000 whole exomes across 33 cancer types and show significant associations of oncoPPIs with patient survival and drug responses. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Grants
- R01GM124559 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM125639 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM130885 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- RM1GM139738 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01DK115398 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01HG007691 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01HL155107 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL155096 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54HL119145 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AHA957729 American Heart Association (American Heart Association, Inc.)
- 24MERIT1185447 American Heart Association (American Heart Association, Inc.)
- R01AG084250 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R56AG074001 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U01AG073323 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG066707 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG076448 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG082118 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1AG082211 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R21AG083003 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1NS133812 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Charis Eng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Yang Q, Jin X, Zhou H, Ying J, Zou J, Liao Y, Lu X, Ge S, Yu H, Min X. SurfPro-NN: A 3D point cloud neural network for the scoring of protein-protein docking models based on surfaces features and protein language models. Comput Biol Chem 2024; 110:108067. [PMID: 38714420 DOI: 10.1016/j.compbiolchem.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024]
Abstract
Protein-protein interactions (PPI) play a crucial role in numerous key biological processes, and the structure of protein complexes provides valuable clues for in-depth exploration of molecular-level biological processes. Protein-protein docking technology is widely used to simulate the spatial structure of proteins. However, there are still challenges in selecting candidate decoys that closely resemble the native structure from protein-protein docking simulations. In this study, we introduce a docking evaluation method based on three-dimensional point cloud neural networks named SurfPro-NN, which represents protein structures as point clouds and learns interaction information from protein interfaces by applying a point cloud neural network. With the continuous advancement of deep learning in the field of biology, a series of knowledge-rich pre-trained models have emerged. We incorporate protein surface representation models and language models into our approach, greatly enhancing feature representation capabilities and achieving superior performance in protein docking model scoring tasks. Through comprehensive testing on public datasets, we find that our method outperforms state-of-the-art deep learning approaches in protein-protein docking model scoring. Not only does it significantly improve performance, but it also greatly accelerates training speed. This study demonstrates the potential of our approach in addressing protein interaction assessment problems, providing strong support for future research and applications in the field of biology.
Collapse
Affiliation(s)
- Qianli Yang
- Institute of Artifical Intelligence, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| | - Xiaocheng Jin
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Haixia Zhou
- School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Junjie Ying
- Institute of Artifical Intelligence, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - JiaJun Zou
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Yiyang Liao
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Xiaoli Lu
- Information and Networking Center, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| | - Xiaoping Min
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| |
Collapse
|
7
|
Tomezsko PJ, Ford CT, Meyer AE, Michaleas AM, Jaimes R. Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. FRONTIERS IN BIOINFORMATICS 2024; 4:1397968. [PMID: 38855143 PMCID: PMC11157076 DOI: 10.3389/fbinf.2024.1397968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
Collapse
Affiliation(s)
| | - Colby T. Ford
- Tuple LLC, Charlotte, NC, United States
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, United States
- University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, United States
| | | | | | - Rafael Jaimes
- MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|
8
|
Zhao H, Petrey D, Murray D, Honig B. ZEPPI: Proteome-scale sequence-based evaluation of protein-protein interaction models. Proc Natl Acad Sci U S A 2024; 121:e2400260121. [PMID: 38743624 PMCID: PMC11127014 DOI: 10.1073/pnas.2400260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Donald Petrey
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- Zuckerman Institute, Columbia University, New York, NY10027
| |
Collapse
|
9
|
Chen X, Liu J, Park N, Cheng J. A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models. Biomolecules 2024; 14:574. [PMID: 38785981 PMCID: PMC11117562 DOI: 10.3390/biom14050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein-protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Nolan Park
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Ovek D, Keskin O, Gursoy A. ProInterVal: Validation of Protein-Protein Interfaces through Learned Interface Representations. J Chem Inf Model 2024; 64:2979-2987. [PMID: 38526504 PMCID: PMC11040718 DOI: 10.1021/acs.jcim.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
Proteins are vital components of the biological world and serve a multitude of functions. They interact with other molecules through their interfaces and participate in crucial cellular processes. Disruption of these interactions can have negative effects on organisms, highlighting the importance of studying protein-protein interfaces for developing targeted therapies for diseases. Therefore, the development of a reliable method for investigating protein-protein interactions is of paramount importance. In this work, we present an approach for validating protein-protein interfaces using learned interface representations. The approach involves using a graph-based contrastive autoencoder architecture and a transformer to learn representations of protein-protein interaction interfaces from unlabeled data and then validating them through learned representations with a graph neural network. Our method achieves an accuracy of 0.91 for the test set, outperforming existing GNN-based methods. We demonstrate the effectiveness of our approach on a benchmark data set and show that it provides a promising solution for validating protein-protein interfaces.
Collapse
Affiliation(s)
- Damla Ovek
- KUIS
AI Center, Koç University, Istanbul 34450, Turkey
- Computer
Engineering, Koç University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Chemical
and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Attila Gursoy
- Computer
Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
11
|
McCoy KM, Ackerman ME, Grigoryan G. A significance score for protein-protein interaction models through random docking. Protein Sci 2024; 33:e4853. [PMID: 38078680 PMCID: PMC10806930 DOI: 10.1002/pro.4853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Comparing accuracies of structural protein-protein interaction (PPI) models for different complexes on an absolute scale is a challenge, requiring normalization of scores across structures of different sizes and shapes. To help address this challenge, we have developed a statistical significance metric for docking models, called random-docking (RD) p-value. This score evaluates a PPI model based on how likely a random docking process is to produce a model of better or equal accuracy. The binding partners are randomly docked against each other a large number of times, and the probability of sampling a model of equal or greater accuracy from this reference distribution is the RD p-value. Using a subset of top predicted models from CAPRI (Critical Assessment of PRediction of Interactions) rounds over 2017-2020, we find that the ease of achieving a given root mean squared deviation or DOCKQ score varies considerably by target; achieving the same relative metric can be thousands of times easier for one complex compared to another. In contrast, RD p-values inherently normalize scores for models of different complexes, making them globally comparable. Furthermore, one can calculate RD p-values after generating a reference distribution that accounts for prior information about the interface geometry, such as residues involved in binding, by giving the random-docking process access the same information. Thus, one can decouple improvements in prediction accuracy that arise solely from basic modeling constraints from those due to the rest of the method. We provide efficient code for computing RD p-values at https://github.com/Grigoryanlab/RDP.
Collapse
Affiliation(s)
| | - Margaret E. Ackerman
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
- Thayer School of EngineeringDartmouth CollegeHanoverNew HampshireUSA
| | - Gevorg Grigoryan
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
- Department of Computer ScienceDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
12
|
Xu X, Bonvin AMJJ. DeepRank-GNN-esm: a graph neural network for scoring protein-protein models using protein language model. BIOINFORMATICS ADVANCES 2024; 4:vbad191. [PMID: 38213822 PMCID: PMC10782804 DOI: 10.1093/bioadv/vbad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Motivation Protein-Protein interactions (PPIs) play critical roles in numerous cellular processes. By modelling the 3D structures of the correspond protein complexes valuable insights can be obtained, providing, e.g. starting points for drug and protein design. One challenge in the modelling process is however the identification of near-native models from the large pool of generated models. To this end we have previously developed DeepRank-GNN, a graph neural network that integrates structural and sequence information to enable effective pattern learning at PPI interfaces. Its main features are related to the Position Specific Scoring Matrices (PSSMs), which are computationally expensive to generate, significantly limits the algorithm's usability. Results We introduce here DeepRank-GNN-esm that includes as additional features protein language model embeddings from the ESM-2 model. We show that the ESM-2 embeddings can actually replace the PSSM features at no cost in-, or even better performance on two PPI-related tasks: scoring docking poses and detecting crystal artifacts. This new DeepRank version bypasses thus the need of generating PSSM, greatly improving the usability of the software and opening new application opportunities for systems for which PSSM profiles cannot be obtained or are irrelevant (e.g. antibody-antigen complexes). Availability and implementation DeepRank-GNN-esm is freely available from https://github.com/DeepRank/DeepRank-GNN-esm.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Chemistry, Faculty of Science, Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Utrecht 3584 CS, The Netherlands
| | - Alexandre M J J Bonvin
- Department of Chemistry, Faculty of Science, Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Utrecht 3584 CS, The Netherlands
| |
Collapse
|
13
|
Zhang L, Wang S, Hou J, Si D, Zhu J, Cao R. ComplexQA: a deep graph learning approach for protein complex structure assessment. Brief Bioinform 2023; 24:bbad287. [PMID: 37930021 DOI: 10.1093/bib/bbad287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 11/07/2023] Open
Abstract
MOTIVATION In recent years, the end-to-end deep learning method for single-chain protein structure prediction has achieved high accuracy. For example, the state-of-the-art method AlphaFold, developed by Google, has largely increased the accuracy of protein structure predictions to near experimental accuracy in some of the cases. At the same time, there are few methods that can evaluate the quality of protein complexes at the residue level. In particular, evaluating the quality of residues at the interface of protein complexes can lead to a wide range of applications, such as protein function analysis and drug design. In this paper, we introduce a new deep graph neural network-based method ComplexQA, to evaluate the local quality of interfaces for protein complexes by utilizing the residue-level structural information in 3D space and the sequence-level constraints. RESULTS We benchmark our method to other state-of-the-art quality assessment approaches on the HAF2 and DBM55-AF2 datasets (high-quality structural models predicted by AlphaFold-Multimer), and the BM5 docking dataset. The experimental results show that our proposed method achieves better or similar performance compared with other state-of-the-art methods, especially on difficult targets which only contain a few acceptable models. Our method is able to suggest a score for each interfac e residue, which demonstrates a powerful assessment tool for the ever-increasing number of protein complexes. AVAILABILITY https://github.com/Cao-Labs/ComplexQA.git. Contact: caora@plu.edu.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Sheng Wang
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Jie Hou
- Department of Computer Science, Saint Louis University, Saint. Louis, 63103, MO, USA
| | - Dong Si
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, 98011, WA, USA
| | - Junyong Zhu
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Renzhi Cao
- Department of Humanities, Pacific Lutheran University, Tacoma, 98447, WA, USA
| |
Collapse
|
14
|
Schweke H, Xu Q, Tauriello G, Pantolini L, Schwede T, Cazals F, Lhéritier A, Fernandez-Recio J, Rodríguez-Lumbreras LÁ, Schueler-Furman O, Varga JK, Jiménez-García B, Réau MF, Bonvin A, Savojardo C, Martelli PL, Casadio R, Tubiana J, Wolfson H, Oliva R, Barradas-Bautista D, Ricciardelli T, Cavallo L, Venclovas Č, Olechnovič K, Guerois R, Andreani J, Martin J, Wang X, Kihara D, Marchand A, Correia B, Zou X, Dey S, Dunbrack R, Levy E, Wodak S. Discriminating physiological from non-physiological interfaces in structures of protein complexes: A community-wide study. Proteomics 2023; 23:e2200323. [PMID: 37365936 PMCID: PMC10937251 DOI: 10.1002/pmic.202200323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julia K. Varga
- Hebrew University of Jerusalem Institute for Medical Research Israel-Canada
| | | | | | | | | | | | | | - Jérôme Tubiana
- Tel Aviv University Blavatnik School of Computer Science
| | - Haim Wolfson
- Tel Aviv University Blavatnik School of Computer Science
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Institute for Data Science and Informatics, University of Missouri
| | | | | | | | | |
Collapse
|
15
|
Chen Z, Liu N, Huang Y, Min X, Zeng X, Ge S, Zhang J, Xia N. PointDE: Protein Docking Evaluation Using 3D Point Cloud Neural Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3128-3138. [PMID: 37220029 DOI: 10.1109/tcbb.2023.3279019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Protein-protein interactions (PPIs) play essential roles in many vital movements and the determination of protein complex structure is helpful to discover the mechanism of PPI. Protein-protein docking is being developed to model the structure of the protein. However, there is still a challenge to selecting the near-native decoys generated by protein-protein docking. Here, we propose a docking evaluation method using 3D point cloud neural network named PointDE. PointDE transforms protein structure to the point cloud. Using the state-of-the-art point cloud network architecture and a novel grouping mechanism, PointDE can capture the geometries of the point cloud and learn the interaction information from the protein interface. On public datasets, PointDE surpasses the state-of-the-art method using deep learning. To further explore the ability of our method in different types of protein structures, we developed a new dataset generated by high-quality antibody-antigen complexes. The result in this antibody-antigen dataset shows the strong performance of PointDE, which will be helpful for the understanding of PPI mechanisms.
Collapse
|
16
|
Chen X, Morehead A, Liu J, Cheng J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 2023; 39:i308-i317. [PMID: 37387159 PMCID: PMC10311325 DOI: 10.1093/bioinformatics/btad203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. RESULTS In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. AVAILABILITY AND IMPLEMENTATION The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Alex Morehead
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| |
Collapse
|
17
|
McFee M, Kim PM. GDockScore: a graph-based protein-protein docking scoring function. BIOINFORMATICS ADVANCES 2023; 3:vbad072. [PMID: 37359726 PMCID: PMC10290236 DOI: 10.1093/bioadv/vbad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Summary Protein complexes play vital roles in a variety of biological processes, such as mediating biochemical reactions, the immune response and cell signalling, with 3D structure specifying function. Computational docking methods provide a means to determine the interface between two complexed polypeptide chains without using time-consuming experimental techniques. The docking process requires the optimal solution to be selected with a scoring function. Here, we propose a novel graph-based deep learning model that utilizes mathematical graph representations of proteins to learn a scoring function (GDockScore). GDockScore was pre-trained on docking outputs generated with the Protein Data Bank biounits and the RosettaDock protocol, and then fine-tuned on HADDOCK decoys generated on the ZDOCK Protein Docking Benchmark. GDockScore performs similarly to the Rosetta scoring function on docking decoys generated using the RosettaDock protocol. Furthermore, state-of-the-art is achieved on the CAPRI score set, a challenging dataset for developing docking scoring functions. Availability and implementation The model implementation is available at https://gitlab.com/mcfeemat/gdockscore. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Matthew McFee
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | | |
Collapse
|
18
|
Wodak SJ, Vajda S, Lensink MF, Kozakov D, Bates PA. Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes. Annu Rev Biophys 2023; 52:183-206. [PMID: 36626764 PMCID: PMC10885158 DOI: 10.1146/annurev-biophys-102622-084607] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
Collapse
Affiliation(s)
- Shoshana J Wodak
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA;
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France;
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA;
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
19
|
Kim HY, Kim S, Park WY, Kim D. G-RANK: an equivariant graph neural network for the scoring of protein-protein docking models. BIOINFORMATICS ADVANCES 2023; 3:vbad011. [PMID: 36818727 PMCID: PMC9927558 DOI: 10.1093/bioadv/vbad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Motivation Protein complex structure prediction is important for many applications in bioengineering. A widely used method for predicting the structure of protein complexes is computational docking. Although many tools for scoring protein-protein docking models have been developed, it is still a challenge to accurately identify near-native models for unknown protein complexes. A recently proposed model called the geometric vector perceptron-graph neural network (GVP-GNN), a subtype of equivariant graph neural networks, has demonstrated success in various 3D molecular structure modeling tasks. Results Herein, we present G-RANK, a GVP-GNN-based method for the scoring of protein-protein docking models. When evaluated on two different test datasets, G-RANK achieved a performance competitive with or better than the state-of-the-art scoring functions. We expect G-RANK to be a useful tool for various applications in biological engineering. Availability and implementation Source code is available at https://github.com/ha01994/grank. Contact kds@kaist.ac.kr. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ha Young Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul 05836, South Korea,Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | | |
Collapse
|
20
|
Jung Y, Geng C, Bonvin AMJJ, Xue LC, Honavar VG. MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein-Protein Docking Conformations. Biomolecules 2023; 13:121. [PMID: 36671507 PMCID: PMC9855734 DOI: 10.3390/biom13010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions play a ubiquitous role in biological function. Knowledge of the three-dimensional (3D) structures of the complexes they form is essential for understanding the structural basis of those interactions and how they orchestrate key cellular processes. Computational docking has become an indispensable alternative to the expensive and time-consuming experimental approaches for determining the 3D structures of protein complexes. Despite recent progress, identifying near-native models from a large set of conformations sampled by docking-the so-called scoring problem-still has considerable room for improvement. We present MetaScore, a new machine-learning-based approach to improve the scoring of docked conformations. MetaScore utilizes a random forest (RF) classifier trained to distinguish near-native from non-native conformations using their protein-protein interfacial features. The features include physicochemical properties, energy terms, interaction-propensity-based features, geometric properties, interface topology features, evolutionary conservation, and also scores produced by traditional scoring functions (SFs). MetaScore scores docked conformations by simply averaging the score produced by the RF classifier with that produced by any traditional SF. We demonstrate that (i) MetaScore consistently outperforms each of the nine traditional SFs included in this work in terms of success rate and hit rate evaluated over conformations ranked among the top 10; (ii) an ensemble method, MetaScore-Ensemble, that combines 10 variants of MetaScore obtained by combining the RF score with each of the traditional SFs outperforms each of the MetaScore variants. We conclude that the performance of traditional SFs can be improved upon by using machine learning to judiciously leverage protein-protein interfacial features and by using ensemble methods to combine multiple scoring functions.
Collapse
Affiliation(s)
- Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Cunliang Geng
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Li C. Xue
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Vasant G. Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Clinical and Translational Sciences Institute, Pennsylvania State University, University Park, PA 16802, USA
- College of Information Sciences & Technology, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Big Data Analytics and Discovery Informatics, Pennsylvania State University, University Park, PA 16823, USA
| |
Collapse
|
21
|
Nagaraju M, Liu H. A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids. Acta Crystallogr D Struct Biol 2023; 79:31-39. [PMID: 36601805 DOI: 10.1107/s2059798322011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Proteins often assemble into functional complexes, the structures of which are more difficult to obtain than those of the individual protein molecules. Given the structures of the subunits, it is possible to predict plausible complex models via computational methods such as molecular docking. Assessing the quality of the predicted models is crucial to obtain correct complex structures. Here, an energy-scoring function was developed based on the interfacial residues of structures in the Protein Data Bank. The statistically derived energy function (Nepre) imitates the neighborhood preferences of amino acids, including the types and relative positions of neighboring residues. Based on the preference statistics, a program iNepre was implemented and its performance was evaluated with several benchmarking decoy data sets. The results show that iNepre scores are powerful in model ranking to select the best protein complex structures.
Collapse
Affiliation(s)
- Mulpuri Nagaraju
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
22
|
Réau M, Renaud N, Xue LC, Bonvin AMJJ. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces. Bioinformatics 2022; 39:6845451. [PMID: 36420989 PMCID: PMC9805592 DOI: 10.1093/bioinformatics/btac759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION Gaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. RESULTS We have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN's performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. AVAILABILITY AND IMPLEMENTATION DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Li C Xue
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | | |
Collapse
|
23
|
Xu T, Zhu K, Beautrait A, Vendome J, Borrelli KW, Abel R, Friesner RA, Miller EB. Induced-Fit Docking Enables Accurate Free Energy Perturbation Calculations in Homology Models. J Chem Theory Comput 2022; 18:5710-5724. [PMID: 35972903 DOI: 10.1021/acs.jctc.2c00371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Homology models have been used for virtual screening and to understand the binding mode of a known active compound; however, rarely have the models been shown to be of sufficient accuracy, comparable to crystal structures, to support free-energy perturbation (FEP) calculations. We demonstrate here that the use of an advanced induced-fit docking methodology reliably enables predictive FEP calculations on congeneric series across homology models ≥30% sequence identity. Furthermore, we show that retrospective FEP calculations on a congeneric series of drug-like ligands are sufficient to discriminate between predicted binding modes. Results are presented for a total of 29 homology models for 14 protein targets, showing FEP results comparable to those obtained using experimentally determined crystal structures for 86% of homology models with template structure sequence identities ranging from 30 to 50%. Implications for the use and validation of homology models in drug discovery projects are discussed.
Collapse
Affiliation(s)
- Tianchuan Xu
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Kai Zhu
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | | | - Jeremie Vendome
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Kenneth W Borrelli
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, MC 3110, New York, New York 10036, United States
| | - Edward B Miller
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| |
Collapse
|
24
|
Pozzati G, Kundrotas P, Elofsson A. Scoring of protein–protein docking models utilizing predicted interface residues. Proteins 2022; 90:1493-1505. [PMID: 35246997 PMCID: PMC9314140 DOI: 10.1002/prot.26330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today's best scoring functions can significantly increase the number of top‐ranked models but still fail for most targets. Here, we examine the possibility of utilizing predicted interface residues to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the regions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. This study systematically tests different interface prediction methods for scoring >300.000 low‐resolution rigid‐body template free docking decoys. Overall we find that contact‐based interface prediction by BIPSPI is the best method to score docking solutions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high‐importance metric when estimating interface prediction quality, focusing on docking constraints production. Finally, we discussed several limitations for adopting interface predictions as constraints in a docking protocol.
Collapse
Affiliation(s)
- Gabriele Pozzati
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| | - Petras Kundrotas
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
- Center for Bioinformatics and Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| |
Collapse
|
25
|
Kotthoff I, Kundrotas PJ, Vakser IA. Dockground
scoring benchmarks for protein docking. Proteins 2022; 90:1259-1266. [DOI: 10.1002/prot.26306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Ian Kotthoff
- Computational Biology Program The University of Kansas Lawrence Kansas USA
| | | | - Ilya A. Vakser
- Computational Biology Program The University of Kansas Lawrence Kansas USA
- Department of Molecular Biosciences The University of Kansas Lawrence Kansas USA
| |
Collapse
|
26
|
Mahita J, Kim DG, Son S, Choi Y, Kim HS, Bailey-Kellogg C. Computational epitope binning reveals functional equivalence of sequence-divergent paratopes. Comput Struct Biotechnol J 2022; 20:2169-2180. [PMID: 35615020 PMCID: PMC9118127 DOI: 10.1016/j.csbj.2022.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Epitope binning groups target-specific protein binders recognizing the same binding region. The “Epibin” method utilizes docking models to computationally predict competition and identify bins. Epibin recapitulated binding competition of repebody variants as determined by immunoassays. In addition, Epibin enabled identification of ‘paratope-equivalent’ residues in sequence-dissimilar variants. Computational epitope binning can scale to allow characterization of entire antigen-specific antibody repertoires.
The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its binding affinity. Advances in in vitro library display screening and next-generation sequencing have enabled accelerated development of strong binders, yet identifying their binding sites still remains a major challenge. The differentiation, or “binning”, of binders into different groups that recognize distinct binding sites on their target is a promising approach that facilitates high-throughput screening of binders that may show different biological activity. Here we study the extent to which the information contained in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them, inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat binding scaffold known as a “repebody” as the source of diversity in recognition against interleukin-6 (IL-6), we show that the “Epibin” approach introduced here effectively utilized structural modelling and docking to extract specificity information encoded in the repebody amino acid sequences and thereby successfully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retrospectively comparing its predictions to results from antigen-specific antibody competition studies. The study thus demonstrates the utility of modeling structure and binding from the amino acid sequences of different binders against the same target, and paves the way for larger-scale binning and analysis of entire repertoires.
Collapse
|
27
|
Karaca E, Prévost C, Sacquin-Mora S. Modeling the Dynamics of Protein-Protein Interfaces, How and Why? Molecules 2022; 27:1841. [PMID: 35335203 PMCID: PMC8950966 DOI: 10.3390/molecules27061841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/07/2022] Open
Abstract
Protein-protein assemblies act as a key component in numerous cellular processes. Their accurate modeling at the atomic level remains a challenge for structural biology. To address this challenge, several docking and a handful of deep learning methodologies focus on modeling protein-protein interfaces. Although the outcome of these methods has been assessed using static reference structures, more and more data point to the fact that the interaction stability and specificity is encoded in the dynamics of these interfaces. Therefore, this dynamics information must be taken into account when modeling and assessing protein interactions at the atomistic scale. Expanding on this, our review initially focuses on the recent computational strategies aiming at investigating protein-protein interfaces in a dynamic fashion using enhanced sampling, multi-scale modeling, and experimental data integration. Then, we discuss how interface dynamics report on the function of protein assemblies in globular complexes, in fuzzy complexes containing intrinsically disordered proteins, as well as in active complexes, where chemical reactions take place across the protein-protein interface.
Collapse
Affiliation(s)
- Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Chantal Prévost
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| | - Sophie Sacquin-Mora
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| |
Collapse
|
28
|
Hippe K, Lilley C, William Berkenpas J, Chandana Pocha C, Kishaba K, Ding H, Hou J, Si D, Cao R. ZoomQA: residue-level protein model accuracy estimation with machine learning on sequential and 3D structural features. Brief Bioinform 2022; 23:bbab384. [PMID: 34553747 PMCID: PMC8499977 DOI: 10.1093/bib/bbab384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION The Estimation of Model Accuracy problem is a cornerstone problem in the field of Bioinformatics. As of CASP14, there are 79 global QA methods, and a minority of 39 residue-level QA methods with very few of them working on protein complexes. Here, we introduce ZoomQA, a novel, single-model method for assessing the accuracy of a tertiary protein structure/complex prediction at residue level, which have many applications such as drug discovery. ZoomQA differs from others by considering the change in chemical and physical features of a fragment structure (a portion of a protein within a radius $r$ of the target amino acid) as the radius of contact increases. Fourteen physical and chemical properties of amino acids are used to build a comprehensive representation of every residue within a protein and grade their placement within the protein as a whole. Moreover, we have shown the potential of ZoomQA to identify problematic regions of the SARS-CoV-2 protein complex. RESULTS We benchmark ZoomQA on CASP14, and it outperforms other state-of-the-art local QA methods and rivals state of the art QA methods in global prediction metrics. Our experiment shows the efficacy of these new features and shows that our method is able to match the performance of other state-of-the-art methods without the use of homology searching against databases or PSSM matrices. AVAILABILITY http://zoomQA.renzhitech.com.
Collapse
Affiliation(s)
- Kyle Hippe
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Cade Lilley
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| | | | | | - Kiyomi Kishaba
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Hui Ding
- Center for Informational Biology at University of Electronic Science and Technology of China
| | | | - Dong Si
- University of Washington Bothell, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| |
Collapse
|
29
|
Renaud N, Geng C, Georgievska S, Ambrosetti F, Ridder L, Marzella DF, Réau MF, Bonvin AMJJ, Xue LC. DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nat Commun 2021; 12:7068. [PMID: 34862392 PMCID: PMC8642403 DOI: 10.1038/s41467-021-27396-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D CNNs with data sets containing millions of PPIs and supports both classification and regression. We demonstrate the performance of DeepRank on two distinct challenges: The classification of biological versus crystallographic PPIs, and the ranking of docking models. For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods, demonstrating the versatility of the framework for research in structural biology.
Collapse
Affiliation(s)
- Nicolas Renaud
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Cunliang Geng
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Sonja Georgievska
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Francesco Ambrosetti
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Lars Ridder
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Dario F Marzella
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525, Nijmegen, GA, The Netherlands
| | - Manon F Réau
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
| | - Li C Xue
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525, Nijmegen, GA, The Netherlands.
| |
Collapse
|
30
|
Jandova Z, Vargiu AV, Bonvin AMJJ. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. J Chem Theory Comput 2021; 17:5944-5954. [PMID: 34342983 PMCID: PMC8444332 DOI: 10.1021/acs.jctc.1c00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular docking excels at creating a plethora of potential models of protein-protein complexes. To correctly distinguish the favorable, native-like models from the remaining ones remains, however, a challenge. We assessed here if a protocol based on molecular dynamics (MD) simulations would allow distinguishing native from non-native models to complement scoring functions used in docking. To this end, the first models for 25 protein-protein complexes were generated using HADDOCK. Next, MD simulations complemented with machine learning were used to discriminate between native and non-native complexes based on a combination of metrics reporting on the stability of the initial models. Native models showed higher stability in almost all measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI) competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes. Reasonably modest simulation lengths of the order of 50-100 ns are sufficient to reach this accuracy, which makes this approach applicable in practice.
Collapse
Affiliation(s)
- Zuzana Jandova
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Attilio Vittorio Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alexandre M. J. J. Bonvin
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
31
|
Prévost C, Sacquin-Mora S. Moving pictures: Reassessing docking experiments with a dynamic view of protein interfaces. Proteins 2021; 89:1315-1323. [PMID: 34038009 DOI: 10.1002/prot.26152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022]
Abstract
The modeling of protein assemblies at the atomic level remains a central issue in structural biology, as protein interactions play a key role in numerous cellular processes. This problem is traditionally addressed using docking tools, where the quality of the models is based on their similarity to a single reference experimental structure. However, using a static reference does not take into account the dynamic quality of the protein interface. Here, we used all-atom classical Molecular Dynamics simulations to investigate the stability of the reference interface for three complexes that previously served as targets in the CAPRI competition. For each one of these targets, we also ran MD simulations for ten models that are distributed over the High, Medium and Acceptable accuracy categories. To assess the quality of these models from a dynamic perspective, we set up new criteria which take into account the stability of the reference experimental protein interface. We show that, when the protein interfaces are allowed to evolve along time, the original ranking based on the static CAPRI criteria no longer holds as over 50% of the docking models undergo a category change (which can be either toward a better or a lower accuracy group) when reassessing their quality using dynamic information.
Collapse
Affiliation(s)
- Chantal Prévost
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Sophie Sacquin-Mora
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
32
|
Wang X, Flannery ST, Kihara D. Protein Docking Model Evaluation by Graph Neural Networks. Front Mol Biosci 2021; 8:647915. [PMID: 34113650 PMCID: PMC8185212 DOI: 10.3389/fmolb.2021.647915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning-based approach named Graph Neural Network-based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sean T. Flannery
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
33
|
Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nat Commun 2021; 12:1693. [PMID: 33727531 PMCID: PMC7966775 DOI: 10.1038/s41467-021-21754-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays. Characterizing proteases in their native environment is still challenging. Here, the authors develop a proteomics workflow for analyzing protease-specific peptides from cell lysates in 96-well format, providing mechanistic insights into blood proteases and enabling the prediction of protease substrates.
Collapse
|
34
|
McCafferty CL, Marcotte EM, Taylor DW. Simplified geometric representations of protein structures identify complementary interaction interfaces. Proteins 2021; 89:348-360. [PMID: 33140424 PMCID: PMC7855953 DOI: 10.1002/prot.26020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a reduced representation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and evolutionary rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 185 overall known protein complexes, we observe predictions comparable to other structure-based tools at correctly identifying protein interaction surfaces. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å Cα-RMSD. Thus, a shape reduction of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTexasUSA
- Center for Systems and Synthetic BiologyUniversity of Texas at AustinAustinTexasUSA
- Institute for Cellular and Molecular BiologyUniversity of Texas at AustinAustinTexasUSA
| | - Edward M. Marcotte
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTexasUSA
- Center for Systems and Synthetic BiologyUniversity of Texas at AustinAustinTexasUSA
- Institute for Cellular and Molecular BiologyUniversity of Texas at AustinAustinTexasUSA
| | - David W. Taylor
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTexasUSA
- Center for Systems and Synthetic BiologyUniversity of Texas at AustinAustinTexasUSA
- Institute for Cellular and Molecular BiologyUniversity of Texas at AustinAustinTexasUSA
- LIVESTRONG Cancer InstitutesDell Medical SchoolAustinTexasUSA
| |
Collapse
|
35
|
Rosário-Ferreira N, Marques-Pereira C, Gouveia RP, Mourão J, Moreira IS. Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. Methods Mol Biol 2021; 2315:3-28. [PMID: 34302667 DOI: 10.1007/978-1-0716-1468-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Catarina Marques-Pereira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Raquel P Gouveia
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
36
|
Dhawanjewar AS, Roy AA, Madhusudhan MS. A knowledge-based scoring function to assess quaternary associations of proteins. Bioinformatics 2020; 36:3739-3748. [PMID: 32246820 DOI: 10.1093/bioinformatics/btaa207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions entail sampling different conformations of the purported complex and then scoring these to assess for interaction viability. In this study, we have devised a new scheme for scoring protein-protein interactions. RESULTS Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identification of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring scheme incorporates residue-residue contact preference on the interface with per residue-pair atomic contributions and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conformations from protein docking experiments and outperform other contact-based potential scoring functions. The method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical, physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization artifacts from biological interactions. AVAILABILITY AND IMPLEMENTATION PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abhilesh S Dhawanjewar
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Ankit A Roy
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | | |
Collapse
|
37
|
Integrative modeling of membrane-associated protein assemblies. Nat Commun 2020; 11:6210. [PMID: 33277503 PMCID: PMC7718903 DOI: 10.1038/s41467-020-20076-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane proteins are among the most challenging systems to study with experimental structural biology techniques. The increased number of deposited structures of membrane proteins has opened the route to modeling their complexes by methods such as docking. Here, we present an integrative computational protocol for the modeling of membrane-associated protein assemblies. The information encoded by the membrane is represented by artificial beads, which allow targeting of the docking toward the binding-competent regions. It combines efficient, artificial intelligence-based rigid-body docking by LightDock with a flexible final refinement with HADDOCK to remove potential clashes at the interface. We demonstrate the performance of this protocol on eighteen membrane-associated complexes, whose interface lies between the membrane and either the cytosolic or periplasmic regions. In addition, we provide a comparison to another state-of-the-art docking software, ZDOCK. This protocol should shed light on the still dark fraction of the interactome consisting of membrane proteins.
Collapse
|
38
|
Roy AA, Dhawanjewar AS, Sharma P, Singh G, Madhusudhan MS. Protein Interaction Z Score Assessment (PIZSA): an empirical scoring scheme for evaluation of protein-protein interactions. Nucleic Acids Res 2020; 47:W331-W337. [PMID: 31114890 PMCID: PMC6602501 DOI: 10.1093/nar/gkz368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 11/24/2022] Open
Abstract
Our web server, PIZSA (http://cospi.iiserpune.ac.in/pizsa), assesses the likelihood of protein–protein interactions by assigning a Z Score computed from interface residue contacts. Our score takes into account the optimal number of atoms that mediate the interaction between pairs of residues and whether these contacts emanate from the main chain or side chain. We tested the score on 174 native interactions for which 100 decoys each were constructed using ZDOCK. The native structure scored better than any of the decoys in 146 cases and was able to rank within the 95th percentile in 162 cases. This easily outperforms a competing method, CIPS. We also benchmarked our scoring scheme on 15 targets from the CAPRI dataset and found that our method had results comparable to that of CIPS. Further, our method is able to analyse higher order protein complexes without the need to explicitly identify chains as receptors or ligands. The PIZSA server is easy to use and could be used to score any input three-dimensional structure and provide a residue pair-wise break up of the results. Attractively, our server offers a platform for users to upload their own potentials and could serve as an ideal testing ground for this class of scoring schemes.
Collapse
Affiliation(s)
- Ankit A Roy
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Abhilesh S Dhawanjewar
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.,presently at School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Parichit Sharma
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.,presently at School of Informatics, Computing & Engineering, Department of Computer Science, Indiana University, Bloomington, IN 47408, USA
| | - Gulzar Singh
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - M S Madhusudhan
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
39
|
Orengo C, Velankar S, Wodak S, Zoete V, Bonvin AMJJ, Elofsson A, Feenstra KA, Gerloff DL, Hamelryck T, Hancock JM, Helmer-Citterich M, Hospital A, Orozco M, Perrakis A, Rarey M, Soares C, Sussman JL, Thornton JM, Tuffery P, Tusnady G, Wierenga R, Salminen T, Schneider B. A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo Community). F1000Res 2020; 9. [PMID: 32566135 PMCID: PMC7284151 DOI: 10.12688/f1000research.20559.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Structural bioinformatics provides the scientific methods and tools to analyse, archive, validate, and present the biomolecular structure data generated by the structural biology community. It also provides an important link with the genomics community, as structural bioinformaticians also use the extensive sequence data to predict protein structures and their functional sites. A very broad and active community of structural bioinformaticians exists across Europe, and 3D-Bioinfo will establish formal platforms to address their needs and better integrate their activities and initiatives. Our mission will be to strengthen the ties with the structural biology research communities in Europe covering life sciences, as well as chemistry and physics and to bridge the gap between these researchers in order to fully realize the potential of structural bioinformatics. Our Community will also undertake dedicated educational, training and outreach efforts to facilitate this, bringing new insights and thus facilitating the development of much needed innovative applications e.g. for human health, drug and protein design. Our combined efforts will be of critical importance to keep the European research efforts competitive in this respect. Here we highlight the major European contributions to the field of structural bioinformatics, the most pressing challenges remaining and how Europe-wide interactions, enabled by ELIXIR and its platforms, will help in addressing these challenges and in coordinating structural bioinformatics resources across Europe. In particular, we present recent activities and future plans to consolidate an ELIXIR 3D-Bioinfo Community in structural bioinformatics and propose means to develop better links across the community. These include building new consortia, organising workshops to establish data standards and seeking community agreement on benchmark data sets and strategies. We also highlight existing and planned collaborations with other ELIXIR Communities and other European infrastructures, such as the structural biology community supported by Instruct-ERIC, with whom we have synergies and overlapping common interests.
Collapse
Affiliation(s)
- Christine Orengo
- Structural and Molecular Biology Department, University College, London, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Shoshana Wodak
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Vincent Zoete
- Department of Oncology, Lausanne University, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandre M J J Bonvin
- Bijvoet Center, Faculty of Science - Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands
| | - Arne Elofsson
- Science for Life Laboratory, Stockholm University, Solna, S-17121, Sweden
| | - K Anton Feenstra
- Dept. Computer Science, Center for Integrative Bioinformatics VU (IBIVU), Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
| | - Dietland L Gerloff
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Thomas Hamelryck
- Bioinformatics center, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | | | - Adam Hospital
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | | | - Matthias Rarey
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, D-20146, Germany
| | - Claudio Soares
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joel L Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Pierre Tuffery
- Ressource Parisienne en Bioinformatique Structurale, Université de Paris, Paris, F-75205, France
| | - Gabor Tusnady
- Membrane Bioinformatics Research Group, Institute of Enzymology, Budapest, H-1117, Hungary
| | | | - Tiina Salminen
- Structural Bioinformatics Laboratory, Åbo Akademi University, Turku, FI-20500, Finland
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, CZ-25250, Czech Republic
| |
Collapse
|
40
|
Cao Y, Shen Y. Energy-based graph convolutional networks for scoring protein docking models. Proteins 2020; 88:1091-1099. [PMID: 32144844 DOI: 10.1002/prot.25888] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Structural information about protein-protein interactions, often missing at the interactome scale, is important for mechanistic understanding of cells and rational discovery of therapeutics. Protein docking provides a computational alternative for such information. However, ranking near-native docked models high among a large number of candidates, often known as the scoring problem, remains a critical challenge. Moreover, estimating model quality, also known as the quality assessment problem, is rarely addressed in protein docking. In this study, the two challenging problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework. We represent protein and complex structures as intra- and inter-molecular residue contact graphs with atom-resolution node and edge features. And we propose a novel graph convolutional kernel that aggregates interacting nodes' features through edges so that generalized interaction energies can be learned directly from 3D data. The resulting energy-based graph convolutional networks (EGCN) with multihead attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes. Compared to a state-of-the-art scoring function for model ranking, EGCN significantly improves ranking for a critical assessment of predicted interactions (CAPRI) test set involving homology docking; and is comparable or slightly better for Score_set, a CAPRI benchmark set generated by diverse community-wide docking protocols not known to training data. For Score_set quality assessment, EGCN shows about 27% improvement to our previous efforts. Directly learning from 3D structure data in graph representation, EGCN represents the first successful development of graph convolutional networks for protein docking.
Collapse
Affiliation(s)
- Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
41
|
Kundrotas PJ, Kotthoff I, Choi SW, Copeland MM, Vakser IA. Dockground Tool for Development and Benchmarking of Protein Docking Procedures. Methods Mol Biol 2020; 2165:289-300. [PMID: 32621232 DOI: 10.1007/978-1-0716-0708-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Databases of protein-protein complexes are essential for the development of protein modeling/docking techniques. Such databases provide a knowledge base for docking algorithms, intermolecular potentials, search procedures, scoring functions, and refinement protocols. Development of docking techniques requires systematic validation of the modeling protocols on carefully curated benchmark sets of complexes. We present a description and a guide to the DOCKGROUND resource ( http://dockground.compbio.ku.edu ) for structural modeling of protein interactions. The resource integrates various datasets of protein complexes and other data for the development and testing of protein docking techniques. The sets include bound complexes, experimentally determined unbound, simulated unbound, model-model complexes, and docking decoys. The datasets are available to the user community through a Web interface.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
| | - Ian Kotthoff
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Sherman W Choi
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Matthew M Copeland
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
42
|
Geng C, Jung Y, Renaud N, Honavar V, Bonvin AMJJ, Xue LC. iScore: a novel graph kernel-based function for scoring protein-protein docking models. Bioinformatics 2020; 36:112-121. [PMID: 31199455 PMCID: PMC6956772 DOI: 10.1093/bioinformatics/btz496] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/08/2019] [Accepted: 06/11/2019] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular processes. Because of the expense and effort associated with experimental determinations of 3D protein complex structures, computational docking has evolved as a valuable tool to predict 3D structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native docking conformations from a large number of candidate conformations, the so-called scoring problem, remains a major challenge. RESULTS Here we present iScore, a novel approach to scoring docked conformations that combines HADDOCK energy terms with a score obtained using a graph representation of the protein-protein interfaces and a measure of evolutionary conservation. It achieves a scoring performance competitive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i) Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of docking approaches (i.e. docking software-non-specific). iScore ranks among the top scoring approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic information for scoring docked conformations. This work represents the first successful demonstration of graph kernels to protein interfaces for effective discrimination of near-native and non-native conformations of protein complexes. AVAILABILITY AND IMPLEMENTATION The iScore code is freely available from Github: https://github.com/DeepRank/iScore (DOI: 10.5281/zenodo.2630567). And the docking models used are available from SBGrid: https://data.sbgrid.org/dataset/684). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cunliang Geng
- Bijvoet Center for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16823, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicolas Renaud
- Netherlands eScience Center, Amsterdam 1098 XG, The Netherlands
| | - Vasant Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16823, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Big Data Analytics and Discovery Informatics, Pennsylvania State University, University Park, PA 16823, USA
- Institute for Cyberscience, University Park, PA 16802, USA
- Clinical and Translational Sciences Institute, University Park, PA 16802, USA
- College of Information Sciences & Technology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Li C Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
43
|
Renaud N, Jung Y, Honavar V, Geng C, Bonvin AM, Xue LC. iScore: An MPI supported software for ranking protein-protein docking models based on a random walk graph kernel and support vector machines. SOFTWAREX 2020; 11:100462. [PMID: 35419466 PMCID: PMC9005067 DOI: 10.1016/j.softx.2020.100462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational docking is a promising tool to model three-dimensional (3D) structures of protein-protein complexes, which provides fundamental insights of protein functions in the cellular life. Singling out near-native models from the huge pool of generated docking models (referred to as the scoring problem) remains as a major challenge in computational docking. We recently published iScore, a novel graph kernel based scoring function. iScore ranks docking models based on their interface graph similarities to the training interface graph set. iScore uses a support vector machine approach with random-walk graph kernels to classify and rank protein-protein interfaces. Here, we present the software for iScore. The software provides executable scripts that fully automate the computational workflow. In addition, the creation and analysis of the interface graph can be distributed across different processes using Message Passing interface (MPI) and can be offloaded to GPUs thanks to dedicated CUDA kernels.
Collapse
Affiliation(s)
- Nicolas Renaud
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
| | - Vasant Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- College of Information Science & Technology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cunliang Geng
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M.J.J. Bonvin
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Li C. Xue
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Perthold JW, Oostenbrink C. GroScore: Accurate Scoring of Protein–Protein Binding Poses Using Explicit-Solvent Free-Energy Calculations. J Chem Inf Model 2019; 59:5074-5085. [DOI: 10.1021/acs.jcim.9b00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Walther Perthold
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
45
|
Pfeiffenberger E, Bates PA. Refinement of protein-protein complexes in contact map space with metadynamics simulations. Proteins 2019; 87:12-22. [PMID: 30370948 PMCID: PMC6492248 DOI: 10.1002/prot.25612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
Accurate protein-protein complex prediction, to atomic detail, is a challenging problem. For flexible docking cases, current state-of-the-art docking methods are limited in their ability to exhaustively search the high dimensionality of the problem space. In this study, to obtain more accurate models, an investigation into the local optimization of initial docked solutions is presented with respect to a reference crystal structure. We show how physics-based refinement of protein-protein complexes in contact map space (CMS), within a metadynamics protocol, can be performed. The method uses 5 times replicated 10 ns simulations for sampling and ranks the generated conformational snapshots with ZRANK to identify an ensemble of n snapshots for final model building. Furthermore, we investigated whether the reconstructed free energy surface (FES), or a combination of both FES and ZRANK, referred to as CSα , can help to reduce snapshot ranking error.
Collapse
Affiliation(s)
- Erik Pfeiffenberger
- Biomolecular Modelling LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Paul A. Bates
- Biomolecular Modelling LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
46
|
Development of a new benchmark for assessing the scoring functions applicable to protein–protein interactions. Future Med Chem 2018; 10:1555-1574. [DOI: 10.4155/fmc-2017-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Scoring functions are important component of protein–protein docking methods. They need to be evaluated on high-quality benchmarks to reveal their strengths and weaknesses. Evaluation results obtained on such benchmarks can provide valuable guidance for developing more advanced scoring functions. Methodology & results: In our comparative assessment of scoring functions for protein–protein interactions benchmark, the performance of a scoring function was characterized by ‘docking power’ and ‘scoring power’. A high-quality dataset of 273 protein–protein complexes was compiled and employed in both tests. Four scoring functions, including FASTCONTACT, ZRANK, dDFIRE and ATTRACT were tested as demonstration. ZRANK and ATTRACT exhibited encouraging performance in the docking power test. However, all four scoring functions failed badly in the scoring power test. Conclusion: Our comparative assessment of scoring functions for protein–protein interaction benchmark is created especially for assessing the scoring functions applicable to protein–protein interactions. It is different from other benchmarks for assessing protein–protein docking methods. Our benchmark is available to the public at www.pdbbind-cn.org/download/CASF-PPI/ .
Collapse
|
47
|
Gaines JC, Acebes S, Virrueta A, Butler M, Regan L, O'Hern CS. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins. Proteins 2018; 86:581-591. [PMID: 29427530 PMCID: PMC5912992 DOI: 10.1002/prot.25479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 12/26/2022]
Abstract
We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins.
Collapse
Affiliation(s)
- J C Gaines
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
| | - S Acebes
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
| | - A Virrueta
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
| | - M Butler
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90007
| | - L Regan
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, 06520
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520
| | - C S O'Hern
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
- Department of Physics, Yale University, New Haven, Connecticut, 06520
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
48
|
Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Properties that rank protein:protein docking poses with high accuracy. Phys Chem Chem Phys 2018; 20:20927-20942. [DOI: 10.1039/c8cp03888k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.
Collapse
Affiliation(s)
- Inês C. M. Simões
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - João T. S. Coimbra
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Rui P. P. Neves
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Inês P. D. Costa
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| |
Collapse
|
49
|
Barradas-Bautista D, Rosell M, Pallara C, Fernández-Recio J. Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems. PROTEIN-PROTEIN INTERACTIONS IN HUMAN DISEASE, PART A 2018; 110:203-249. [DOI: 10.1016/bs.apcsb.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Kundrotas PJ, Anishchenko I, Dauzhenka T, Kotthoff I, Mnevets D, Copeland MM, Vakser IA. Dockground: A comprehensive data resource for modeling of protein complexes. Protein Sci 2017; 27:172-181. [PMID: 28891124 DOI: 10.1002/pro.3295] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
Characterization of life processes at the molecular level requires structural details of protein interactions. The number of experimentally determined structures of protein-protein complexes accounts only for a fraction of known protein interactions. This gap in structural description of the interactome has to be bridged by modeling. An essential part of the development of structural modeling/docking techniques for protein interactions is databases of protein-protein complexes. They are necessary for studying protein interfaces, providing a knowledge base for docking algorithms, and developing intermolecular potentials, search procedures, and scoring functions. Development of protein-protein docking techniques requires thorough benchmarking of different parts of the docking protocols on carefully curated sets of protein-protein complexes. We present a comprehensive description of the Dockground resource (http://dockground.compbio.ku.edu) for structural modeling of protein interactions, including previously unpublished unbound docking benchmark set 4, and the X-ray docking decoy set 2. The resource offers a variety of interconnected datasets of protein-protein complexes and other data for the development and testing of different aspects of protein docking methodologies. Based on protein-protein complexes extracted from the PDB biounit files, Dockground offers sets of X-ray unbound, simulated unbound, model, and docking decoy structures. All datasets are freely available for download, as a whole or selecting specific structures, through a user-friendly interface on one integrated website.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ivan Anishchenko
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Taras Dauzhenka
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ian Kotthoff
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Daniil Mnevets
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Matthew M Copeland
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ilya A Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|