1
|
Abstract
Peptide natural products constitute a major class of secondary metabolites produced by microorganisms (mostly bacteria and fungi). In the past several decades, researchers have gained extensive knowledge about nonribosomal peptides (NRPs) generated by ribosome-independent systems, namely, NRP synthetases (NRPSs). NRPSs are multifunctional enzymes consisting of semiautonomous domains that form a peptide backbone. Using a thiotemplate mechanism that employs assembly-line logic with multiple modules, NRPSs activate, tether, and modify amino acid building blocks, sequentially elongating the peptide chain before releasing the complete peptide. Adenylation, thiolation, condensation, and thioesterase domains play central roles in these reactions. This chapter focuses on the current understanding of these central domains in NRPS assembly-line enzymology.
Collapse
Affiliation(s)
- Chitose Maruyama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
- Fukui Bioincubation Center (FBIC), Fukui Prefectural University, Fukui, Japan
| | - Yoshimitsu Hamano
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan.
- Fukui Bioincubation Center (FBIC), Fukui Prefectural University, Fukui, Japan.
| |
Collapse
|
2
|
Kaniusaite M, Goode RJA, Schittenhelm RB, Makris TM, Cryle MJ. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. ACS Chem Biol 2019; 14:2932-2941. [PMID: 31774267 PMCID: PMC6929969 DOI: 10.1021/acschembio.9b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
β-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the β-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Robert J. A. Goode
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas M. Makris
- Department
of Chemistry and Biochemistry, University
of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Max J. Cryle
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
5
|
Brieke C, Tarnawski M, Greule A, Cryle MJ. Investigating Cytochrome P450 specificity during glycopeptide antibiotic biosynthesis through a homologue hybridization approach. J Inorg Biochem 2018; 185:43-51. [DOI: 10.1016/j.jinorgbio.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
|
6
|
Peschke M, Brieke C, Heimes M, Cryle MJ. The Thioesterase Domain in Glycopeptide Antibiotic Biosynthesis Is Selective for Cross-Linked Aglycones. ACS Chem Biol 2018; 13:110-120. [PMID: 29192758 DOI: 10.1021/acschembio.7b00943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The biosynthesis of the glycopeptide antibiotics (GPAs)-which include teicoplanin and vancomycin-is a complex enzymatic process relying on the interplay of nonribosomal peptide synthesis and a cytochrome P450-mediated cyclization cascade. This unique cyclization cascade generates the highly cross-linked state of these nonribosomal peptides, which is crucial for their antimicrobial activity. Given that these essential oxidative transformations occur while the peptide remains bound to the terminal module of the nonribosomal peptide synthetase (NRPS) machinery, it is important to assess the selectivity of the terminal thioesterase (TE) domain and how this domain contributes to the maintenance of an efficient biosynthetic pathway while at the same time ensuring GPA maturation is completed. In this study, we report the in vitro characterization of the thioesterase domain from teicoplanin biosynthesis, the first GPA thioesterase to be characterized. Our results show that the activity of this TE domain relies on the presence of an unusual extended N-terminal linker region that appears to be unique to the NRPS machineries found in GPA biosynthesis. In addition, we show that the activity of this domain against carrier protein bound substrates is dramatically enhanced for mature GPA aglycones as opposed to linear peptides and partially cyclized intermediates. These results demonstrate how the interplay between NRPS and P450s during late stage GPA biosynthesis is not only maintained but also leads to the efficient production of mature GPA aglycones. Thus, GPA TE domains represent another impressive example of the ability of TE domains to act as logic gates during NRPS biosynthesis, ensuring that essential late-stage peptide modifications are completed before catalyzing the release of the mature, bioactive peptide product.
Collapse
Affiliation(s)
- Madeleine Peschke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Clara Brieke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Michael Heimes
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Max J. Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Goodrich AC, Meyers DJ, Frueh DP. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. J Biol Chem 2017; 292:10002-10013. [PMID: 28455448 DOI: 10.1074/jbc.m116.766220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Nonribosomal peptide synthesis involves the interplay between covalent protein modifications, conformational fluctuations, catalysis, and transient protein-protein interactions. Delineating the mechanisms involved in orchestrating these various processes will deepen our understanding of domain-domain communication in nonribosomal peptide synthetases (NRPSs) and lay the groundwork for the rational reengineering of NRPSs by swapping domains handling different substrates to generate novel natural products. Although many structural and biochemical studies of NRPSs exist, few studies have focused on the energetics and dynamics governing the interactions in these systems. Here, we present detailed binding studies of an adenylation domain and its partner carrier protein in apo-, holo-, and substrate-loaded forms. Results from fluorescence anisotropy, isothermal titration calorimetry, and NMR titrations indicated that covalent modifications to a carrier protein modulate domain communication, suggesting that chemical modifications to carrier proteins during NRPS synthesis may impart directionality to sequential NRPS domain interactions. Comparison of the structure and dynamics of an apo-aryl carrier protein with those of its modified forms revealed structural fluctuations induced by post-translational modifications and mediated by modulations of protein dynamics. The results provide a comprehensive molecular description of a carrier protein throughout its life cycle and demonstrate how a network of dynamic residues can propagate the molecular impact of chemical modifications throughout a protein and influence its affinity toward partner domains.
Collapse
Affiliation(s)
| | - David J Meyers
- the Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
8
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
9
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
10
|
Ulrich V, Cryle MJ. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications. J Pept Sci 2016; 23:16-27. [PMID: 27910178 DOI: 10.1002/psc.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Veronika Ulrich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
11
|
Owen JG, Calcott MJ, Robins KJ, Ackerley DF. Generating Functional Recombinant NRPS Enzymes in the Laboratory Setting via Peptidyl Carrier Protein Engineering. Cell Chem Biol 2016; 23:1395-1406. [PMID: 27984027 DOI: 10.1016/j.chembiol.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/29/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic assembly lines where substrates and intermediates undergo rounds of transformation catalyzed by adenylation (A), condensation (C), and thioesterase (TE) domains. Central to the NRPS biosynthesis are peptidyl carrier protein (PCP) domains, small, catalytically inactive domains that shuttle substrates and intermediates between the catalytic modules and govern product release from TE domains. There is strong interest in recombination of NRPS systems to generate new chemical entities. However, the intrinsic complexity of these systems has been a major challenge. Here, we employ domain substitution and random mutagenesis to recapitulate NRPS evolution, focusing on PCP domains. Using NRPS model systems that produce two different pigmented molecules, pyoverdine and indigoidine, we found that only evolutionarily specialized recombinant PCP domains could interact effectively with the native TE domain for product release. Overall, we highlight that substituted PCP domains require very minor changes to result in functional NRPSs, and infer that positive selection pressure may improve recombinant NRPS outcomes.
Collapse
Affiliation(s)
- Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Katherine J Robins
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
12
|
Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis. Angew Chem Int Ed Engl 2016; 55:9834-40. [PMID: 27435901 PMCID: PMC5113783 DOI: 10.1002/anie.201602614] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 12/28/2022]
Abstract
The nonribosomal peptide synthetases (NRPSs) are one of the most promising resources for the production of new bioactive molecules. The mechanism of NRPS catalysis is based around sequential catalytic domains: these are organized into modules, where each module selects, modifies, and incorporates an amino acid into the growing peptide. The intermediates formed during NRPS catalysis are delivered between enzyme centers by peptidyl carrier protein (PCP) domains, which makes PCP interactions and movements crucial to NRPS mechanism. PCP movement has been linked to the domain alternation cycle of adenylation (A) domains, and recent complete NRPS module structures provide support for this hypothesis. However, it appears as though the A domain alternation alone is insufficient to account for the complete NRPS catalytic cycle and that the loaded state of the PCP must also play a role in choreographing catalysis in these complex and fascinating molecular machines.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Aurelio Mollo
- Department of Chemistry, Haverford College, Haverford, PA, 19041, USA
| | | | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany. .,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia. .,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
13
|
Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. Neue Strukturdaten geben Einblick in die Bewegungen von Transportproteinen in der nicht-ribosomalen Peptidsynthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tiia Kittilä
- Abteilung Biomolekulare Mechanismen; Max-Planck-Institut für Medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
| | - Aurelio Mollo
- Department of Chemistry; Haverford College; Haverford PA 19041 USA
| | | | - Max J. Cryle
- Abteilung Biomolekulare Mechanismen; Max-Planck-Institut für Medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
- EMBL Australia; Monash University; Clayton Victoria 3800 Australien
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging; Monash University; Clayton VIC 3800 Australien
| |
Collapse
|
14
|
Sticky swinging arm dynamics: studies of an acyl carrier protein domain from the mycolactone polyketide synthase. Biochem J 2016; 473:1097-110. [PMID: 26920023 PMCID: PMC4847154 DOI: 10.1042/bcj20160041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
When covalently linked to an acyl carrier protein (ACP) and loaded with acyl substrate-mimics, some 4′-phosphopantetheine prosthetic group arms swing freely, whereas others stick to the protein surface, suggesting a possible mode of interaction with enzyme domains during polyketide biosynthesis. Type I modular polyketide synthases (PKSs) produce polyketide natural products by passing a growing acyl substrate chain between a series of enzyme domains housed within a gigantic multifunctional polypeptide assembly. Throughout each round of chain extension and modification reactions, the substrate stays covalently linked to an acyl carrier protein (ACP) domain. In the present study we report on the solution structure and dynamics of an ACP domain excised from MLSA2, module 9 of the PKS system that constructs the macrolactone ring of the toxin mycolactone, cause of the tropical disease Buruli ulcer. After modification of apo ACP with 4′-phosphopantetheine (Ppant) to create the holo form, 15N nuclear spin relaxation and paramagnetic relaxation enhancement (PRE) experiments suggest that the prosthetic group swings freely. The minimal chemical shift perturbations displayed by Ppant-attached C3 and C4 acyl chains imply that these substrate-mimics remain exposed to solvent at the end of a flexible Ppant arm. By contrast, hexanoyl and octanoyl chains yield much larger chemical shift perturbations, indicating that they interact with the surface of the domain. The solution structure of octanoyl-ACP shows the Ppant arm bending to allow the acyl chain to nestle into a nonpolar pocket, whereas the prosthetic group itself remains largely solvent exposed. Although the highly reduced octanoyl group is not a natural substrate for the ACP from MLSA2, similar presentation modes would permit partner enzyme domains to recognize an acyl group while it is bound to the surface of its carrier protein, allowing simultaneous interactions with both the substrate and the ACP.
Collapse
|
15
|
Kokona B, Winesett ES, Nikolai von Krusenstiern A, Cryle MJ, Fairman R, Charkoudian LK. Probing the selectivity of β-hydroxylation reactions in non-ribosomal peptide synthesis using analytical ultracentrifugation. Anal Biochem 2016; 495:42-51. [DOI: 10.1016/j.ab.2015.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
|
16
|
Brieke C, Maier T, Schröter M, Cryle MJ. Design and synthesis of peptide inhibitor conjugates as probes of the Cytochrome P450s from glycopeptide antibiotic biosynthesis. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00332f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycopeptide antibiotics are important clinical antibiotics that are currently employed against serious Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Clara Brieke
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69120 Heidelberg
- Germany
| | - Theresa Maier
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69120 Heidelberg
- Germany
| | - Martin Schröter
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69120 Heidelberg
- Germany
| | - Max J. Cryle
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69120 Heidelberg
- Germany
| |
Collapse
|
17
|
Brieke C, Peschke M, Haslinger K, Cryle MJ. Sequential In Vitro Cyclization by Cytochrome P450 Enzymes of Glycopeptide Antibiotic Precursors Bearing the X‐Domain from Nonribosomal Peptide Biosynthesis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clara Brieke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Madeleine Peschke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Kristina Haslinger
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Max J. Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| |
Collapse
|
18
|
Brieke C, Peschke M, Haslinger K, Cryle MJ. Sequential In Vitro Cyclization by Cytochrome P450 Enzymes of Glycopeptide Antibiotic Precursors Bearing the X‐Domain from Nonribosomal Peptide Biosynthesis. Angew Chem Int Ed Engl 2015; 54:15715-9. [DOI: 10.1002/anie.201507533] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Clara Brieke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Madeleine Peschke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Kristina Haslinger
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| | - Max J. Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
| |
Collapse
|
19
|
The structural biology of biosynthetic megaenzymes. Nat Chem Biol 2015; 11:660-70. [PMID: 26284673 DOI: 10.1038/nchembio.1883] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology.
Collapse
|
20
|
Goodrich AC, Harden BJ, Frueh DP. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. J Am Chem Soc 2015; 137:12100-9. [PMID: 26334259 DOI: 10.1021/jacs.5b07772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Bradley J Harden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
21
|
Jaremko MJ, Lee DJ, Opella SJ, Burkart MD. Structure and Substrate Sequestration in the Pyoluteorin Type II Peptidyl Carrier Protein PltL. J Am Chem Soc 2015; 137:11546-9. [PMID: 26340431 DOI: 10.1021/jacs.5b04525] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type II nonribosomal peptide synthetases (NRPS) generate exotic amino acid derivatives that, combined with additional pathways, form many bioactive natural products. One family of type II NRPSs produce pyrrole moieties, which commonly arise from proline oxidation while tethered to a conserved, type II peptidyl carrier protein (PCP), as exemplified by PltL in the biosynthesis of pyoluteorin. We sought to understand the structural role of pyrrole PCPs in substrate and protein interactions through the study of pyrrole analogs tethered to PltL. Solution-phase NMR structural analysis revealed key interactions in residues of helix II and III with a bound pyrrole moiety. Conservation of these residues among PCPs in other pyrrole containing pathways suggests a conserved mechanism for formation, modification, and incorporation of pyrrole moieties. Further NOE analysis provided a unique pyrrole binding motif, offering accurate substrate positioning within the cleft between helices II and III. The overall structure resembles other PCPs but contains a unique conformation for helix III. This provides evidence of sequestration by the PCP of aromatic pyrrole substrates, illustrating the importance of substrate protection and regulation in type II NRPS systems.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
22
|
Zimmermann S, Pfennig S, Neumann P, Yonus H, Weininger U, Kovermann M, Balbach J, Stubbs MT. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms. FEBS Lett 2015; 589:2283-9. [PMID: 26193422 DOI: 10.1016/j.febslet.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales.
Collapse
Affiliation(s)
- Stephan Zimmermann
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Sabrina Pfennig
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Piotr Neumann
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Huma Yonus
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Ulrich Weininger
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle/Saale, Germany
| | - Michael Kovermann
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle/Saale, Germany
| | - Jochen Balbach
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle/Saale, Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg, Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.
| |
Collapse
|