1
|
Vincenot A, Saultier P, Kunishima S, Poggi M, Hurtaud-Roux MF, Roussel A, Actn Study Coinvestigators, Schlegel N, Alessi MC. Novel ACTN1 variants in cases of thrombocytopenia. Hum Mutat 2019; 40:2258-2269. [PMID: 31237726 PMCID: PMC6900141 DOI: 10.1002/humu.23840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 11/11/2022]
Abstract
The ACTN1 gene has been implicated in inherited macrothrombocytopenia. To decipher the spectrum of variants and phenotype of ACTN1‐related thrombocytopenia, we sequenced the ACTN1 gene in 272 cases of unexplained chronic or familial thrombocytopenia. We identified 15 rare, monoallelic, nonsynonymous and likely pathogenic ACTN1 variants in 20 index cases from 20 unrelated families. Thirty‐one family members exhibited thrombocytopenia. Targeted sequencing was carried out on 12 affected relatives, which confirmed presence of the variant. Twenty‐eight of 32 cases with monoallelic ACTN1 variants had mild to no bleeding complications. Eleven cases harbored 11 different unreported ACTN1 variants that were monoallelic and likely pathogenic. Nine variants were located in the α‐actinin‐1 (ACTN1) rod domain and were predicted to hinder dimer formation. These variants displayed a smaller increase in platelet size compared with variants located outside the rod domain. In vitro expression of the new ACTN1 variants induced actin network disorganization and led to increased thickness of actin fibers. These findings expand the repertoire of ACTN1 variants associated with thrombocytopenia and highlight the high frequency of ACTN1‐related thrombocytopenia cases. The rod domain, like other ACTN1 functional domains, may be mutated resulting in actin disorganization in vitro and thrombocytopenia with normal platelet size in most cases.
Collapse
Affiliation(s)
- Anne Vincenot
- CHU Robert Debré, National Reference Center for Inherited Platelet Disorders and Biological Hematology Service, AP-HP, Paris, France
| | - Paul Saultier
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Seki, Gifu, Japan
| | - Marjorie Poggi
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Marie-Françoise Hurtaud-Roux
- CHU Robert Debré, National Reference Center for Inherited Platelet Disorders and Biological Hematology Service, AP-HP, Paris, France
| | - Alain Roussel
- Aix Marseille University, CNRS, AFMB, Marseille, France
| | | | - Nicole Schlegel
- CHU Robert Debré, National Reference Center for Inherited Platelet Disorders and Biological Hematology Service, AP-HP, Paris, France
| | - Marie-Christine Alessi
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,APHM, CHU Timone, French Reference Center for Inherited Platelet Disorders, Marseille, France
| |
Collapse
|
2
|
Fealey ME, Horn B, Coffman C, Miller R, Lin AY, Thompson AR, Schramel J, Groth E, Hinderliter A, Cembran A, Thomas DD. Dynamics of Dystrophin's Actin-Binding Domain. Biophys J 2018; 115:445-454. [PMID: 30007583 DOI: 10.1016/j.bpj.2018.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
We have used pulsed electron paramagnetic resonance, calorimetry, and molecular dynamics simulations to examine the structural mechanism of binding for dystrophin's N-terminal actin-binding domain (ABD1) and compare it to utrophin's ABD1. Like other members of the spectrin superfamily, dystrophin's ABD1 consists of two calponin-homology (CH) domains, CH1 and CH2. Several mutations within dystrophin's ABD1 are associated with the development of severe degenerative muscle disorders Duchenne and Becker muscular dystrophies, highlighting the importance of understanding its structural biology. To investigate structural changes within dystrophin ABD1 upon binding to actin, we labeled the protein with spin probes and measured changes in inter-CH domain distance using double-electron electron resonance. Previous studies on the homologous protein utrophin showed that actin binding induces a complete structural opening of the CH domains, resulting in a highly ordered ABD1-actin complex. In this study, double-electron electron resonance shows that dystrophin ABD1 also undergoes a conformational opening upon binding F-actin, but this change is less complete and significantly more structurally disordered than observed for utrophin. Using molecular dynamics simulations, we identified a hinge in the linker region between the two CH domains that grants conformational flexibility to ABD1. The conformational dynamics of both dystrophin's and utrophin's ABD1 showed that compact conformations driven by hydrophobic interactions are preferred and that extended conformations are energetically accessible through a flat free-energy surface. Considering that the binding free energy of ABD1 to actin is on the order of 6-7 kcal/mole, our data are compatible with a mechanism in which binding to actin is largely dictated by specific interactions with CH1, but fine tuning of the binding affinity is achieved by the overlap between conformational ensembles of ABD1 free and bound to actin.
Collapse
Affiliation(s)
- Michael E Fealey
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin Horn
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Christian Coffman
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Robert Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Ava Y Lin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Justine Schramel
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Erin Groth
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Anne Hinderliter
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Koczok K, Merő G, Szabó GP, Madar L, Gombos É, Ajzner É, Mótyán JA, Hortobágyi T, Balogh I. A novel point mutation affecting Asn76 of dystrophin protein leads to dystrophinopathy. Neuromuscul Disord 2018; 28:129-136. [DOI: 10.1016/j.nmd.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
|
4
|
Singh SM, Bandi S, Mallela KMG. The N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains. Biochemistry 2015; 54:6942-50. [PMID: 26516677 DOI: 10.1021/acs.biochem.5b00969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tandem CH domains work. Actin cosedimentation assays indicate that the isolated CH2 domain of dystrophin weakly binds to F-actin compared to the full-length tandem CH domain. In contrast, the isolated CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain. Thus, the obvious question is why the dystrophin tandem CH domain requires CH2, when its actin binding is determined primarily by CH1. To answer, we probed the structural stabilities of CH domains. The isolated CH1 domain is very unstable and is prone to serious aggregation. The isolated CH2 domain is very stable, similar to the full-length tandem CH domain. These results indicate that the main role of CH2 is to stabilize the tandem CH domain structure. These conclusions from dystrophin agree with our earlier results on utrophin, indicating that this phenomenon of differential contribution of CH domains to the structure and function of tandem CH domains may be quite general. The N-terminal CH1 domains primarily determine the actin binding function whereas the C-terminal CH2 domains primarily determine the structural stability of tandem CH domains, and the extent of stabilization depends on the strength of inter-CH domain interactions.
Collapse
Affiliation(s)
- Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
6
|
Guiraud S, Squire SE, Edwards B, Chen H, Burns DT, Shah N, Babbs A, Davies SG, Wynne GM, Russell AJ, Elsey D, Wilson FX, Tinsley JM, Davies KE. Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum Mol Genet 2015; 24:4212-24. [PMID: 25935002 PMCID: PMC4492389 DOI: 10.1093/hmg/ddv154] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PT, UK and
| | - David Elsey
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Francis X Wilson
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Jon M Tinsley
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| |
Collapse
|