1
|
Xu W, Qin X, Liu Y, Chen J, Wang Y. Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery. Curr Drug Deliv 2025; 22:374-386. [PMID: 37496133 DOI: 10.2174/1567201820666230726151607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Because of low immunogenicity, ease of modification, and inherent biosafety, peptides have been well recognized as vehicles to deliver therapeutic agents to targeted regions with improved pharmacokinetic characteristics. Enzyme-responsive self-assembled peptides (ERSAPs) show superiority over their naive forms due to their enhanced targeting efficacy and long-retention property. In this review, we have summarized recent advances in the therapeutic application of ERSAPs, mainly focusing on their self-therapeutic properties and potential as vehicles to deliver different drugs.
Collapse
Affiliation(s)
- Wentao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jun Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuguang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
2
|
Rajpersaud T, Tabandeh S, Leon L, Loverde SM. Molecular Dynamics Simulations of Polyelectrolyte Complexes. Biomacromolecules 2024; 25:1468-1480. [PMID: 38366971 DOI: 10.1021/acs.biomac.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Polyelectrolyte complexes (PECs) are currently of great interest due to their applications toward developing new adaptive materials and their relevance in membraneless organelles. These complexes emerge during phase separation when oppositely charged polymers are mixed in aqueous media. Peptide-based PECs are particularly useful toward developing new drug delivery methods due to their inherent biocompatibility. The underlying peptide sequence can be tuned to optimize specific material properties of the complex, such as interfacial tension and viscosity. Given their applicability, it would be advantageous to understand the underlying sequence-dependent phase behavior of oppositely charged peptides. Here, we report microsecond molecular dynamic simulations to characterize the effect of hydrophobicity on the sequence-dependent peptide conformation for model polypeptide sequences that were previously reported by Tabandeh et al. These sequences are designed with alternating chirality of the peptide backbone. We present microsecond simulations of six oppositely charged peptide pairs, characterizing the sequence-dependent effect on peptide size, degree of hydrogen bonding, secondary structure, and conformation. This analysis recapitulates sensible trends in peptide conformation and degree of hydrogen bonding, consistent with experimentally reported results. Ramachandran plots reveal that backbone conformation at the single amino acid level is highly influenced by the neighboring sequence in the chain. These results give insight into how subtle changes in hydrophobic side chain size and chirality influence the strength of hydrogen bonding between the chains and, ultimately, the secondary structure. Furthermore, principal component analysis reveals that the minimum energy structures may be subtly modulated by the underlying sequence.
Collapse
Affiliation(s)
- Tania Rajpersaud
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, United States
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, United States
| | - Sharon M Loverde
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| |
Collapse
|
3
|
Magin IM, Pushkin IA, Ageeva AA, Martianova SO, Polyakov NE, Doktorov AB, Leshina TV. Impact of Non-Covalent Interactions of Chiral Linked Systems in Solution on Photoinduced Electron Transfer Efficiency. Int J Mol Sci 2023; 24:9296. [PMID: 37298248 PMCID: PMC10253034 DOI: 10.3390/ijms24119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
It is well-known that non-covalent interactions play an essential role in the functioning of biomolecules in living organisms. The significant attention of researchers is focused on the mechanisms of associates formation and the role of the chiral configuration of proteins, peptides, and amino acids in the association. We have recently demonstrated the unique sensitivity of chemically induced dynamic nuclear polarization (CIDNP) formed in photoinduced electron transfer (PET) in chiral donor-acceptor dyads to non-covalent interactions of its diastereomers in solutions. The present study further develops the approach for quantitatively analyzing the factors that determine the association by examples of dimerization of the diastereomers with the RS, SR, and SS optical configurations. It has been shown that, under the UV irradiation of dyads, CIDNP is formed in associates, namely, homodimers (SS-SS), (SR-SR), and heterodimers (SS-SR) of diastereomers. In particular, the efficiency of PET in homo-, heterodimers, and monomers of dyads completely determines the forms of dependences of the CIDNP enhancement coefficient ratio of SS and RS, SR configurations on the ratio of diastereomer concentrations. We expect that the use of such a correlation can be useful in identifying small-sized associates in peptides, which is still a problem.
Collapse
Affiliation(s)
- Ilya M. Magin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Ivan A. Pushkin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Ageeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sofia O. Martianova
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay E. Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Alexander B. Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| |
Collapse
|
4
|
Moses K, Van Tassel PR. Polyelectrolyte Influence on Beta-Hairpin Peptide Stability: A Simulation Study. J Phys Chem B 2023; 127:359-370. [PMID: 36574611 DOI: 10.1021/acs.jpcb.2c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of proteins and charged macromolecules (polyelectrolytes) find important applications as pharmaceutical formulations, biocatalysts, and cell-contacting substrates. A key question is how the polymer component influences the structure and function of the protein. The present paper addresses the influence of charged polymers on the thermal stability of two model beta-hairpin-forming peptides through an all-atom, replica exchange molecular dynamics simulation. The (negatively charged) peptides consist of the terminal 16 amino acids of the B1 domain of Protein G (GB1) and a variant with three of the GB1 residues substituted with tryptophan (Tryptophan Zipper 4, or TZ4). A (cationic) lysine polymer is seen to thermally stabilize TZ4 and destabilize GB1, while a (also cationic) chitosan polymer slightly stabilizes GB1 but has essentially no effect on TZ4. Free energy profiles reveal folded and unfolded conformations to be separated by kinetic barriers generally acting in the direction of the thermodynamically favored state. Through application of an Ising-like statistical mechanical model, a mechanism is proposed based on competition between (indirect) entropic stabilization of folded versus unfolded states and (direct) competition for hydrogen-bonding and hydrophobic interactions. These findings have important implications to the design of polyelectrolyte-based materials for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Kevin Moses
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Paul R Van Tassel
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
5
|
Foley AR, Raskatov JA. Understanding and controlling amyloid aggregation with chirality. Curr Opin Chem Biol 2021; 64:1-9. [PMID: 33610939 PMCID: PMC8368077 DOI: 10.1016/j.cbpa.2021.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
Amyloid aggregation and human disease are inextricably linked. Examples include Alzheimer disease, Parkinson disease, and type II diabetes. While seminal advances on the mechanistic understanding of these diseases have been made over the last decades, controlling amyloid fibril formation still represents a challenge, and it is a subject of active research. In this regard, chiral modifications have increasingly been proved to offer a particularly well-suited approach toward accessing to previously unknown aggregation pathways and to provide with novel insights on the biological mechanisms of action of amyloidogenic peptides and proteins. Here, we summarize recent advances on how the use of mirror-image peptides/proteins and d-amino acid incorporations have helped modulate amyloid aggregation, offered new mechanistic tools to study cellular interactions, and allowed us to identify key positions within the peptide/protein sequence that influence amyloid fibril growth and toxicity.
Collapse
Affiliation(s)
- Alejandro R Foley
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
6
|
Wang ZY, Zhang NN, Li JC, Lu J, Zhao L, Fang XD, Liu K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. SOFT MATTER 2021; 17:6298-6304. [PMID: 34160542 DOI: 10.1039/d1sm00784j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine serum albumin (PSA) can guide the chiral assembly of gold nanorods (GNRs) with left-handed chiroptical responses opposite to those by a series of other homologous animal serum albumins (SAs) due to the difference of their surface charge distributions. Under physiological pH conditions, the assembly of HSA or PSA with GNRs yielded left-handed twisted aggregates, while bovine serum albumin (BSA), sheep serum albumin, and equine serum albumin behaved on the contrary. The driving force for the chiral assembly is mainly attributed to electrostatic interaction. The opposite chiroptical signals acquired are correlated with the chiral surface charge distributions of the tertiary structures of SAs. Moreover, the chirality of the assembly induced by both HSA and BSA can be enhanced or reversed by adjusting the pH values. This work provides new insights into the modulation of protein-induced chiral assemblies and promotes their applications.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Jin-Cheng Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China. and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Li Zhao
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xue-Dong Fang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
7
|
Ageeva AA, Magin IM, Doktorov AB, Plyusnin VF, Kuznetsova PS, Stepanov AA, Alekseev AA, Polyakov NE, Leshina TV. Role of Chiral Configuration in the Photoinduced Interaction of D- and L-Tryptophan with Optical Isomers of Ketoprofen in Linked Systems. Int J Mol Sci 2021; 22:ijms22126198. [PMID: 34201293 PMCID: PMC8227724 DOI: 10.3390/ijms22126198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer’s and Parkinson’s diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor–acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole–dipole interaction in the secular equation.
Collapse
Affiliation(s)
- Aleksandra A. Ageeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| | - Ilya M. Magin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| | - Alexander B. Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
- Correspondence:
| | - Victor F. Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Polina S. Kuznetsova
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Stepanov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| | - Alexander A. Alekseev
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| | - Nikolay E. Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (A.A.A.); (I.M.M.); (V.F.P.); (P.S.K.); (A.A.S.); (A.A.A.); (N.E.P.); (T.V.L.)
| |
Collapse
|
8
|
Wang J, Wang C, Ge Y, Sun Y, Wang D, Xu H. Self‐assembly
of hairpin peptides mediated by Cu(
II
) ion: Effect of amino acid sequence. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China
| | - Yanqing Ge
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| |
Collapse
|
9
|
Zerze GH, Stillinger FH, Debenedetti PG. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides. FEBS Lett 2019; 594:104-113. [PMID: 31356683 DOI: 10.1002/1873-3468.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
We use all-atom modeling and advanced-sampling molecular dynamics simulations to investigate quantitatively the effect of peptide bond directionality on the equilibrium structures of four linear (two foldable, two disordered) and two cyclic peptides. We find that the retro forms of cyclic and foldable linear peptides adopt distinctively different conformations compared to their parents. While the retro form of a linear intrinsically disordered peptide with transient secondary structure fails to reproduce a secondary structure content similar to that of its parent, the retro form of a shorter disordered linear peptide shows only minor differences compared to its parent.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|