1
|
Cordeiro Josino LP, da Penha Valente RP, de Souza da Silva ML, Alves CN, Lima AH. Molecular dynamics of transferrin receptor binder peptides: unlocking blood-brain barrier for enhanced CNS drug delivery. J Biomol Struct Dyn 2025:1-10. [PMID: 39743789 DOI: 10.1080/07391102.2024.2446676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/27/2024] [Indexed: 01/04/2025]
Abstract
A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR. Binding free energy calculations showed a strong correlation with experimental binding affinities of -10.99 kcal/mol for TfRB1G2 and -13.18 kcal/mol for TfRB1G3, with a relative error of 1.98%. The key forces driving these interactions include electrostatic and van der Waals forces, with mutations in TfRB1G3 (T9M and A13D) enhancing its binding affinity through improved interactions with residues such as Arg633. The free energy landscape analysis revealed that TfRB1G3 maintains the N-terminal residues of TfR in an α-helical conformation, unlike TfRB1G2. Per-residue free energy decomposition identified key residues - Leu619, Arg629, Tyr643, and Phe650 - as crucial for TfR binding, underscoring their competitive nature with transferrin. Additionally, Glu612, which is favorable for binding in TfRB1G2, becomes unfavorable in TfRB1G3. Conversely, Arg633 shifts from unfavorable in TfRB1G2 to favorable in TfRB1G3, compensating for the loss of favorable interaction with Glu612. These findings provide valuable molecular insights into the TfRB1 peptides' potential as drug carriers, highlighting their capability to deliver molecules to the CNS and compete with transferrin for BBB transport.
Collapse
Affiliation(s)
- Luiz Patrick Cordeiro Josino
- Programa de Pós-Graduação em Química Medicinal e Modelagem Molecular, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
| | - Renan Patrick da Penha Valente
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Maria Luane de Souza da Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| |
Collapse
|
2
|
Bonvicini G, Bagawath Singh S, Nygren P, Xiong M, Syvänen S, Sehlin D, Falk R, Andersson KG. Comparing in vitro affinity measurements of antibodies to TfR1: Surface plasmon resonance versus on-cell affinity. Anal Biochem 2024; 686:115406. [PMID: 38006952 DOI: 10.1016/j.ab.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Despite years of utilizing the transferrin receptor 1 (TfR1) to transport large biomolecules into the brain, there is no consensus on how to optimally measure affinity to it. The aim of this study was to compare different methods for measuring the affinities of anti-TfR1 antibodies. Antibodies 15G11, OX26 and 8D3 are known to successfully carry large biologics across the blood-brain barrier in humans, rats, and mice, respectively. The affinity to their respective species of TfR1 was measured with different surface plasmon resonance setups in Biacore and an on-cell assay. When the antibody was captured and TfR1 was the analyte, the dissociation in Biacore was very slow. The dissociation was faster when the antibody was the analyte and TfR1 was the ligand. The Biacore setup with capture of N-terminal FLAG-tag TfR1 yielded the most similar apparent affinities as the cell assay. In conclusion, it is important to evaluate assay parameters including assay orientation, surface capture method, and antibody-format when comparing binding kinetics for TfR1 antibodies. Although it seems possible to determine relative affinities of TfR1 antibodies using the methods described here, both the FLAG-tag TfR1 capture setup and cell assays likely yield apparent affinities that are most translatable in vivo.
Collapse
Affiliation(s)
- Gillian Bonvicini
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden; Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | | | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Ronny Falk
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
| | - Ken G Andersson
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden.
| |
Collapse
|
3
|
Sjöström DJ, Grill B, Ambrosetti E, Veetil AA, Mohlin C, Teixeira AI, Oberdofer G, Bjelic S. Affinity Maturated Transferrin Receptor Apical Domain Blocks Machupo Virus Glycoprotein Binding. J Mol Biol 2023; 435:168262. [PMID: 37678707 DOI: 10.1016/j.jmb.2023.168262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Transferrin receptor 1 (TfR) delivers iron across cellular membranes by shuttling the ion carrier protein transferrin. This ability to deliver large protein ligands inside cells is taken advantage of by pathogens to infiltrate human cells. Notably, the receptor's outermost ectodomain, the apical domain, is used as a point of attachment for several viruses including hemorrhagic arenaviruses. To better understand interactions with the receptor it would be advantageous to probe sequence determinants in the apical domain with viral spike proteins. Here, we carried out affinity maturation of our computationally designed apical domain from human TfR to identify underlying driving forces that lead to better binding. The improved variants were confirmed by in vitro surface plasmon resonance measurements with dissociation constants obtained in the lower nanomolar range. It was found that the strong binding affinities for the optimized variants matched the strength of interactions with the native receptor. The structure of the best variant was determined experimentally indicating that the conformational change in the hairpin binding motif at the protein-protein interface plays a crucial role. The experimental methodology can be straightforwardly applied to other arenavirus or pathogens that use the apical domain. It can further be useful to probe host-virus compatibility or therapeutic strategies based on the transferrin receptor decoys.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Birgit Grill
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | | | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Gustav Oberdofer
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
4
|
Sjöström DJ, Mohlin C, Ambrosetti E, Garforth SJ, Teixeira AI, Bjelic S. Motif-driven protein binder design towards transferrin receptor helical domain. FEBS J 2021; 289:2935-2947. [PMID: 34862739 DOI: 10.1111/febs.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Human transferrin receptor 1 (TfR) is necessary for the delivery of the iron carrier protein transferrin into cells and can be utilized for targeted delivery across cellular membranes. Binding of transferrin to the receptor is regulated by hereditary hemochromatosis protein (HFE), an iron regulatory protein that partly shares a binding site with transferrin on TfR. Here, we derived essential binding interactions from HFE and computationally grafted these into a library of small protein scaffolds. One of the designed proteins, TB08, was further optimized computationally and experimentally to identify variants with improved binding to TfR. The optimized variant, TB08 S3.1, expressed well in the E. coli expression system and had an affinity to TfR in the low micromolar range, Kd ≈ 1 μm, as determined by surface plasmon resonance. A binding competition assay with transferrin further confirmed the interaction of the evolved variant to TfR at the shared binding surface. Additionally, the GFP-tagged evolved variant of TB08 demonstrated cellular internalization as determined by fluorescent and confocal microscopy in HeLa cells. The designed protein is small, allows for robust cargo tagging, and interacts specifically with TfR, thus making it a valuable tool for the characterization of TfR-mediated cellular transport mechanisms and for the assessment of engineering strategies for cargo delivery across cell membranes.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
5
|
Sjöström DJ, Lundgren A, Garforth SJ, Bjelic S. Tuning the binding interface between Machupo virus glycoprotein and human transferrin receptor. Proteins 2020; 89:311-321. [PMID: 33068039 PMCID: PMC7894301 DOI: 10.1002/prot.26016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|