1
|
Tennenhouse A, Khmelnitsky L, Khalaila R, Yeshaya N, Noronha A, Lindzen M, Makowski EK, Zaretsky I, Sirkis YF, Galon-Wolfenson Y, Tessier PM, Abramson J, Yarden Y, Fass D, Fleishman SJ. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat Biomed Eng 2024; 8:30-44. [PMID: 37550425 PMCID: PMC10842793 DOI: 10.1038/s41551-023-01079-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks. The method, which we named CUMAb (for computational human antibody design; available at http://CUMAb.weizmann.ac.il ), starts from an experimental or model antibody structure and uses Rosetta atomistic simulations to select designs by energy and structural integrity. CUMAb-designed humanized versions of five antibodies exhibited similar affinities to those of the parental animal antibodies, with some designs showing marked improvement in stability. We also show that (1) non-homologous frameworks are often preferred to highest-homology frameworks, and (2) several CUMAb designs that differ by dozens of mutations and that use different human frameworks are functionally equivalent.
Collapse
Affiliation(s)
- Ariel Tennenhouse
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emily K Makowski
- Biointerfaces Institute and Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ira Zaretsky
- Antibody Engineering Unit, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Peter M Tessier
- Biointerfaces Institute and Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Vishwakarma P, Vattekatte AM, Shinada N, Diharce J, Martins C, Cadet F, Gardebien F, Etchebest C, Nadaradjane AA, de Brevern AG. V HH Structural Modelling Approaches: A Critical Review. Int J Mol Sci 2022; 23:3721. [PMID: 35409081 PMCID: PMC8998791 DOI: 10.3390/ijms23073721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.
Collapse
Affiliation(s)
- Poonam Vishwakarma
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Akhila Melarkode Vattekatte
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | | | - Julien Diharce
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Carla Martins
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Frédéric Cadet
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
- PEACCEL, Artificial Intelligence Department, Square Albin Cachot, F-75013 Paris, France
| | - Fabrice Gardebien
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Catherine Etchebest
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Alexandre G. de Brevern
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| |
Collapse
|