1
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 2023; 91:1747-1770. [PMID: 37876231 PMCID: PMC10841292 DOI: 10.1002/prot.26602] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
2
|
Mulvaney T, Kretsch RC, Elliott L, Beton JG, Kryshtafovych A, Rigden DJ, Das R, Topf M. CASP15 cryo-EM protein and RNA targets: Refinement and analysis using experimental maps. Proteins 2023; 91:1935-1951. [PMID: 37994556 PMCID: PMC10697286 DOI: 10.1002/prot.26644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
CASP assessments primarily rely on comparing predicted coordinates with experimental reference structures. However, experimental structures by their nature are only models themselves-their construction involves a certain degree of subjectivity in interpreting density maps and translating them to atomic coordinates. Here, we directly utilized density maps to evaluate the predictions by employing a method for ranking the quality of protein chain predictions based on their fit into the experimental density. The fit-based ranking was found to correlate well with the CASP assessment scores. Overall, the evaluation against the density map indicated that the models are of high accuracy, and occasionally even better than the reference structure in some regions of the model. Local assessment of predicted side chains in a 1.52 Å resolution map showed that side-chains are sometimes poorly positioned. Additionally, the top 118 predictions associated with 9 protein target reference structures were selected for automated refinement, in addition to the top 40 predictions for 11 RNA targets. For both proteins and RNA, the refinement of CASP15 predictions resulted in structures that are close to the reference target structure. This refinement was successful despite large conformational changes often being required, showing that predictions from CASP-assessed methods could serve as a good starting point for building atomic models in cryo-EM maps for both proteins and RNA. Loop modeling continued to pose a challenge for predictors, and together with the lack of consensus amongst models in these regions suggests that modeling, in combination with model-fit to the density, holds the potential for identifying more flexible regions within the structure.
Collapse
Affiliation(s)
- Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rachael C Kretsch
- Biophysics Program, Stanford University School of Medicine, California, USA
| | - Luc Elliott
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Joseph G Beton
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
| | | | - Daniel J Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, California, USA
- Department of Biochemistry, Stanford University School of Medicine, California, USA
- Howard Hughes Medical Institute, Stanford University, California, USA
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
3
|
Kryshtafovych A, Montelione GT, Rigden DJ, Mesdaghi S, Karaca E, Moult J. Breaking the conformational ensemble barrier: Ensemble structure modeling challenges in CASP15. Proteins 2023; 91:1903-1911. [PMID: 37872703 PMCID: PMC10840738 DOI: 10.1002/prot.26584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 10/25/2023]
Abstract
For the first time, the 2022 CASP (Critical Assessment of Structure Prediction) community experiment included a section on computing multiple conformations for protein and RNA structures. There was full or partial success in reproducing the ensembles for four of the nine targets, an encouraging result. For protein structures, enhanced sampling with variations of the AlphaFold2 deep learning method was by far the most effective approach. One substantial conformational change caused by a single mutation across a complex interface was accurately reproduced. In two other assembly modeling cases, methods succeeded in sampling conformations near to the experimental ones even though environmental factors were not included in the calculations. An experimentally derived flexibility ensemble allowed a single accurate RNA structure model to be identified. Difficulties included how to handle sparse or low-resolution experimental data and the current lack of effective methods for modeling RNA/protein complexes. However, these and other obstacles appear addressable.
Collapse
Affiliation(s)
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Shahram Mesdaghi
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Computational Biology Facility, MerseyBio, University of Liverpool, Liverpool, UK
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Kulczyk AW. Artificial intelligence and the analysis of cryo-EM data provide structural insight into the molecular mechanisms underlying LN-lamininopathies. Sci Rep 2023; 13:17825. [PMID: 37857770 PMCID: PMC10587063 DOI: 10.1038/s41598-023-45200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Laminins (Lm) are major components of basement membranes (BM), which polymerize to form a planar lattice on cell surface. Genetic alternations of Lm affect their oligomerization patterns and lead to failures in BM assembly manifesting in a group of human disorders collectively defined as Lm N-terminal domain lamininopathies (LN-lamininopathies). We have employed a recently determined cryo-EM structure of the Lm polymer node, the basic repeating unit of the Lm lattice, along with structure prediction and modeling to systematically analyze structures of twenty-three pathogenic Lm polymer nodes implicated in human disease. Our analysis provides the detailed mechanistic explanation how Lm mutations lead to failures in Lm polymerization underlining LN-lamininopathies. We propose the new categorization scheme of LN-lamininopathies based on the insight gained from the structural analysis. Our results can help to facilitate rational drug design aiming in the treatment of Lm deficiencies.
Collapse
Affiliation(s)
- Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Department of Biochemistry & Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Malhotra S, Mulvaney T, Cragnolini T, Sidhu H, Joseph A, Beton J, Topf M. RIBFIND2: Identifying rigid bodies in protein and nucleic acid structures. Nucleic Acids Res 2023; 51:9567-9575. [PMID: 37670532 PMCID: PMC10570027 DOI: 10.1093/nar/gkad721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Molecular structures are often fitted into cryo-EM maps by flexible fitting. When this requires large conformational changes, identifying rigid bodies can help optimize the model-map fit. Tools for identifying rigid bodies in protein structures exist, however an equivalent for nucleic acid structures is lacking. With the increase in cryo-EM maps containing RNA and progress in RNA structure prediction, there is a need for such tools. We previously developed RIBFIND, a program for clustering protein secondary structures into rigid bodies. In RIBFIND2, this approach is extended to nucleic acid structures. RIBFIND2 can identify biologically relevant rigid bodies in important groups of complex RNA structures, capturing a wide range of dynamics, including large rigid-body movements. The usefulness of RIBFIND2-assigned rigid bodies in cryo-EM model refinement was demonstrated on three examples, with two conformations each: Group II Intron complexed IEP, Internal Ribosome Entry Site and the Processome, using cryo-EM maps at 2.7-5 Å resolution. A hierarchical refinement approach, performed on progressively smaller sets of RIBFIND2 rigid bodies, was clearly shown to have an advantage over classical all-atom refinement. RIBFIND2 is available via a web server with structure visualization and as a standalone tool.
Collapse
Affiliation(s)
- Sony Malhotra
- Science and Technology Facilities Council, Scientific Computing, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Thomas Mulvaney
- Leibniz Institute of Virology, Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg D-22607, Germany
- Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg 20246, Germany
| | - Tristan Cragnolini
- Leibniz Institute of Virology, Hamburg 20251, Germany
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Haneesh Sidhu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Agnel P Joseph
- Science and Technology Facilities Council, Scientific Computing, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Joseph G Beton
- Leibniz Institute of Virology, Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg D-22607, Germany
| | - Maya Topf
- Leibniz Institute of Virology, Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg D-22607, Germany
- Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg 20246, Germany
| |
Collapse
|
6
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538330. [PMID: 37162955 PMCID: PMC10168427 DOI: 10.1101/2023.04.25.538330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and X-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as non-canonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
7
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
8
|
Terwilliger TC, Poon BK, Afonine PV, Schlicksup CJ, Croll TI, Millán C, Richardson JS, Read RJ, Adams PD. Improved AlphaFold modeling with implicit experimental information. Nat Methods 2022; 19:1376-1382. [PMID: 36266465 PMCID: PMC9636017 DOI: 10.1038/s41592-022-01645-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022]
Abstract
Machine-learning prediction algorithms such as AlphaFold and RoseTTAFold can create remarkably accurate protein models, but these models usually have some regions that are predicted with low confidence or poor accuracy. We hypothesized that by implicitly including new experimental information such as a density map, a greater portion of a model could be predicted accurately, and that this might synergistically improve parts of the model that were not fully addressed by either machine learning or experiment alone. An iterative procedure was developed in which AlphaFold models are automatically rebuilt on the basis of experimental density maps and the rebuilt models are used as templates in new AlphaFold predictions. We show that including experimental information improves prediction beyond the improvement obtained with simple rebuilding guided by the experimental data. This procedure for AlphaFold modeling with density has been incorporated into an automated procedure for interpretation of crystallographic and electron cryo-microscopy maps.
Collapse
Affiliation(s)
- Thomas C Terwilliger
- New Mexico Consortium, Los Alamos, NM, USA.
- Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Billy K Poon
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pavel V Afonine
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Schlicksup
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tristan I Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Paul D Adams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Millán C, Keegan RM, Pereira J, Sammito MD, Simpkin AJ, McCoy AJ, Lupas AN, Hartmann MD, Rigden DJ, Read RJ. Assessing the utility of CASP14 models for molecular replacement. Proteins 2021; 89:1752-1769. [PMID: 34387010 PMCID: PMC8881082 DOI: 10.1002/prot.26214] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The assessment of CASP models for utility in molecular replacement is a measure of their use in a valuable real‐world application. In CASP7, the metric for molecular replacement assessment involved full likelihood‐based molecular replacement searches; however, this restricted the assessable targets to crystal structures with only one copy of the target in the asymmetric unit, and to those where the search found the correct pose. In CASP10, full molecular replacement searches were replaced by likelihood‐based rigid‐body refinement of models superimposed on the target using the LGA algorithm, with the metric being the refined log‐likelihood‐gain (LLG) score. This enabled multi‐copy targets and very poor models to be evaluated, but a significant further issue remained: the requirement of diffraction data for assessment. We introduce here the relative‐expected‐LLG (reLLG), which is independent of diffraction data. This reLLG is also independent of any crystal form, and can be calculated regardless of the source of the target, be it X‐ray, NMR or cryo‐EM. We calibrate the reLLG against the LLG for targets in CASP14, showing that it is a robust measure of both model and group ranking. Like the LLG, the reLLG shows that accurate coordinate error estimates add substantial value to predicted models. We find that refinement by CASP groups can often convert an inadequate initial model into a successful MR search model. Consistent with findings from others, we show that the AlphaFold2 models are sufficiently good, and reliably so, to surpass other current model generation strategies for attempting molecular replacement phasing.
Collapse
Affiliation(s)
- Claudia Millán
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Ronan M Keegan
- Scientific Computing Dept., Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire, United Kingdom
| | - Joana Pereira
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, Germany
| | - Massimo D Sammito
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Adam J Simpkin
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7BE, United Kingdom
| | - Airlie J McCoy
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, Germany
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7BE, United Kingdom
| | - Randy J Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|