1
|
Genc AG, McGuffin LJ. Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction. Methods Mol Biol 2025; 2867:121-139. [PMID: 39576578 DOI: 10.1007/978-1-0716-4196-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularly with the development of AlphaFold2 (AF2), which can analyze sequences of amino acids and predict 3D structures with near experimental accuracy. Since the release of AF2, numerous studies have been conducted, either using AF2 directly for large-scale modeling or building upon the software for other use cases. Many reviews have been published discussing the impact of AF2 in the field of protein bioinformatics, particularly in relation to neural networks, which have highlighted what AF2 can and cannot do. It is evident that AF2 and similar approaches are open to further development and several new approaches have emerged, in addition to older refinement approaches, for improving the quality of predictions. Here we provide a brief overview, aimed at the general biologist, of how machine learning techniques have been used for improvement of 3D models of proteins following AF2, and we highlight the impacts of these approaches. In the most recent experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP15), the most successful groups all developed their own tools for protein structure modeling that were based at least in some part on AF2. This improvement involved employing techniques such as generative modeling, changing parameters such as dropout to generate more AF2 structures, and data-driven approaches including using alternative templates and MSAs.
Collapse
Affiliation(s)
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
2
|
Baker K, Hughes N, Bhattacharya S. An interactive visualization tool for educational outreach in protein contact map overlap analysis. FRONTIERS IN BIOINFORMATICS 2024; 4:1358550. [PMID: 38562910 PMCID: PMC10982686 DOI: 10.3389/fbinf.2024.1358550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Recent advancements in contact map-based protein three-dimensional (3D) structure prediction have been driven by the evolution of deep learning algorithms. However, the gap in accessible software tools for novices in this domain remains a significant challenge. This study introduces GoFold, a novel, standalone graphical user interface (GUI) designed for beginners to perform contact map overlap (CMO) problems for better template selection. Unlike existing tools that cater more to research needs or assume foundational knowledge, GoFold offers an intuitive, user-friendly platform with comprehensive tutorials. It stands out in its ability to visually represent the CMO problem, allowing users to input proteins in various formats and explore the CMO problem. The educational value of GoFold is demonstrated through benchmarking against the state-of-the-art contact map overlap method, map_align, using two datasets: PSICOV and CAMEO. GoFold exhibits superior performance in terms of TM-score and Z-score metrics across diverse qualities of contact maps and target difficulties. Notably, GoFold runs efficiently on personal computers without any third-party dependencies, thereby making it accessible to the general public for promoting citizen science. The tool is freely available for download for macOS, Linux, and Windows.
Collapse
Affiliation(s)
- Kevan Baker
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Nathaniel Hughes
- Department of Computer Science and Computer Information Systems, Auburn University at Montgomery, Montgomery, AL, United States
| | - Sutanu Bhattacharya
- Department of Computer Science and Computer Information Systems, Auburn University at Montgomery, Montgomery, AL, United States
| |
Collapse
|
3
|
Olechnovič K, Valančauskas L, Dapkūnas J, Venclovas Č. Prediction of protein assemblies by structure sampling followed by interface-focused scoring. Proteins 2023; 91:1724-1733. [PMID: 37578163 DOI: 10.1002/prot.26569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Proteins often function as part of permanent or transient multimeric complexes, and understanding function of these assemblies requires knowledge of their three-dimensional structures. While the ability of AlphaFold to predict structures of individual proteins with unprecedented accuracy has revolutionized structural biology, modeling structures of protein assemblies remains challenging. To address this challenge, we developed a protocol for predicting structures of protein complexes involving model sampling followed by scoring focused on the subunit-subunit interaction interface. In this protocol, we diversified AlphaFold models by varying construction and pairing of multiple sequence alignments as well as increasing the number of recycles. In cases when AlphaFold failed to assemble a full protein complex or produced unreliable results, additional diverse models were constructed by docking of monomers or subcomplexes. All the models were then scored using a newly developed method, VoroIF-jury, which relies only on structural information. Notably, VoroIF-jury is independent of AlphaFold self-assessment scores and therefore can be used to rank models originating from different structure prediction methods. We tested our protocol in CASP15 and obtained top results, significantly outperforming the standard AlphaFold-Multimer pipeline. Analysis of our results showed that the accuracy of our assembly models was capped mainly by structure sampling rather than model scoring. This observation suggests that better sampling, especially for the antibody-antigen complexes, may lead to further improvement. Our protocol is expected to be useful for modeling and/or scoring protein assemblies.
Collapse
Affiliation(s)
- Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lukas Valančauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
5
|
Elofsson A. Progress at protein structure prediction, as seen in CASP15. Curr Opin Struct Biol 2023; 80:102594. [PMID: 37060758 DOI: 10.1016/j.sbi.2023.102594] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
In Dec 2020, the results of AlphaFold version 2 were presented at CASP14, sparking a revolution in the field of protein structure predictions. For the first time, a purely computational method could challenge experimental accuracy for structure prediction of single protein domains. The code of AlphaFold v2 was released in the summer of 2021, and since then, it has been shown that it can be used to accurately predict the structure of most ordered proteins and many protein-protein interactions. It has also sparked an explosion of development in the field, improving AI-based methods to predict protein complexes, disordered regions, and protein design. Here I will review some of the inventions sparked by the release of AlphaFold.
Collapse
Affiliation(s)
- Arne Elofsson
- Science for Life Laboratory and Dep. of Biochemistry and Biophysics, Stockholm University, Sweden.
| |
Collapse
|
6
|
Chesney A, Maiti B, Hansmann UH. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. ACS OMEGA 2023; 8:12501-12511. [PMID: 37033831 PMCID: PMC10077547 DOI: 10.1021/acsomega.3c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 can lead to the onset of type-II diabetes, which is associated with the aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium between amylin monomers in its functional form and fibrils associated with diabetes is altered in the presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the envelope protein or the fragment FKNIDGYFKI of the spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for the two different proteins.
Collapse
|
7
|
Chesney AD, Maiti B, Hansmann UHE. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526275. [PMID: 36778414 PMCID: PMC9915464 DOI: 10.1101/2023.01.30.526275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Covid-19 can lead to the onset of type-II diabetes which is associated with aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium, between amylin monomers in its functional form and fibrils associated with diabetes, is altered in presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the Envelope protein or the fragment FKNIDGYFKI of the Spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for two different proteins.
Collapse
|
8
|
Della Corte D, Morris CJ, Billings WM, Stern J, Jarrett AJ, Hedelius B, Bennion A. Training undergraduate research assistants with an outcome-oriented and skill-based mentoring strategy. Acta Crystallogr D Struct Biol 2022; 78:936-944. [PMID: 35916219 PMCID: PMC9344475 DOI: 10.1107/s2059798322005861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Effective mentoring of undergraduate students is a growing requirement for the promotion of faculty at many universities. It is often challenging for young investigators to define a successful mentoring strategy, partially due to the absence of a broadly accepted definition of what mentoring should entail. To overcome this, an outcome-oriented mentoring framework was developed and used with more than 25 students over three years. It was found that a systematic mentoring approach can help students quickly realize their scientific potential and result in meaningful contributions to science. This report especially shows how the Critical Assessment of Protein Structure Prediction (CASP14) challenge was used to amplify student research efforts. As a result of this challenge, multiple publications, presentations and scholarships were awarded to the participating students. The mentoring framework continues to see much success in allowing undergraduate students, including students from underrepresented groups, to foster scientific talent and make meaningful contributions to the scientific community.
Collapse
Affiliation(s)
- Dennis Della Corte
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Connor J. Morris
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Wendy M. Billings
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Jacob Stern
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Austin J. Jarrett
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Bryce Hedelius
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| | - Adam Bennion
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
9
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an Amyloidogenic SARS-COV-2 Protein Fragment on α-Synuclein Monomers and Fibrils. J Phys Chem B 2022; 126:3648-3658. [PMID: 35580331 PMCID: PMC9186263 DOI: 10.1021/acs.jpcb.2c01254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance W Lander
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew D Chesney
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
11
|
van Breugel M, Rosa E Silva I, Andreeva A. Structural validation and assessment of AlphaFold2 predictions for centrosomal and centriolar proteins and their complexes. Commun Biol 2022; 5:312. [PMID: 35383272 PMCID: PMC8983713 DOI: 10.1038/s42003-022-03269-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Obtaining the high-resolution structures of proteins and their complexes is a crucial aspect of understanding the mechanisms of life. Experimental structure determination methods are time-consuming, expensive and cannot keep pace with the growing number of protein sequences available through genomic DNA sequencing. Thus, the ability to accurately predict the structure of proteins from their sequence is a holy grail of structural and computational biology that would remove a bottleneck in our efforts to understand as well as rationally engineer living systems. Recent advances in protein structure prediction, in particular the breakthrough with the AI-based tool AlphaFold2 (AF2), hold promise for achieving this goal, but the practical utility of AF2 remains to be explored. Focusing on proteins with essential roles in centrosome and centriole biogenesis, we demonstrate the quality and usability of the AF2 prediction models and we show that they can provide important insights into the modular organization of two key players in this process, CEP192 and CEP44. Furthermore, we used the AF2 algorithm to elucidate and then experimentally validate previously unknown prime features in the structure of TTBK2 bound to CEP164, as well as the Chibby1-FAM92A complex for which no structural information was available to date. These findings have important implications in understanding the regulation and function of these complexes. Finally, we also discuss some practical limitations of AF2 and anticipate the implications for future research approaches in the centriole/centrosome field.
Collapse
Affiliation(s)
- Mark van Breugel
- Queen Mary University of London, School of Biological and Behavioural Sciences, 4 Newark Street, London, E1 2AT, UK.
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ivan Rosa E Silva
- Queen Mary University of London, School of Biological and Behavioural Sciences, 4 Newark Street, London, E1 2AT, UK
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- University of Campinas, Faculty of Pharmaceutical Sciences, Cândido Portinari Street, Campinas, 13083-871, Brazil
| | - Antonina Andreeva
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
12
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an amyloidogenic SARS-COV-2 protein fragment on α-synuclein monomers and fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.21.481360. [PMID: 35233574 PMCID: PMC8887075 DOI: 10.1101/2022.02.21.481360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using molecular dynamic simulations we study whether amyloidogenic regions in viral proteins can initiate and modulate formation of α-synuclein aggregates, thought to be the disease-causing agent in Parkinson's Disease. As an example we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the Envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only little effect of the stability of pre-existing or newly-formed fibrils.
Collapse
|
13
|
Yamamori Y, Tomii K. Application of Homology Modeling by Enhanced Profile-Profile Alignment and Flexible-Fitting Simulation to Cryo-EM Based Structure Determination. Int J Mol Sci 2022; 23:1977. [PMID: 35216093 PMCID: PMC8879198 DOI: 10.3390/ijms23041977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Application of cryo-electron microscopy (cryo-EM) is crucially important for ascertaining the atomic structure of large biomolecules such as ribosomes and protein complexes in membranes. Advances in cryo-EM technology and software have made it possible to obtain data with near-atomic resolution, but the method is still often capable of producing only a density map with up to medium resolution, either partially or entirely. Therefore, bridging the gap separating the density map and the atomic model is necessary. Herein, we propose a methodology for constructing atomic structure models based on cryo-EM maps with low-to-medium resolution. The method is a combination of sensitive and accurate homology modeling using our profile-profile alignment method with a flexible-fitting method using molecular dynamics simulation. As described herein, this study used benchmark applications to evaluate the model constructions of human two-pore channel 2 (one target protein in CASP13 with its structure determined using cryo-EM data) and the overall structure of Enterococcus hirae V-ATPase complex.
Collapse
Affiliation(s)
- Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
- AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
14
|
Pavan M, Bassani D, Bolcato G, Bissaro M, Sturles M, Moro S. Computational strategies to identify new drug candidates against neuroinflammation. Curr Med Chem 2022; 29:4756-4775. [PMID: 35135446 DOI: 10.2174/0929867329666220208095122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
The even more increasing application of computational approaches in these last decades has deeply modified the process of discovery and commercialization of new therapeutic entities. This is especially true in the field of neuroinflammation, in which both the peculiar anatomical localization and the presence of the blood-brain barrier makeit mandatory to finely tune the candidates' physicochemical properties from the early stages of the discovery pipeline. The aim of this review is therefore to provide a general overview to the readers about the topic of neuroinflammation, together with the most common computational strategies that can be exploited to discover and design small molecules controlling neuroinflammation, especially those based on the knowledge of the three-dimensional structure of the biological targets of therapeutic interest. The techniques used to describe the molecular recognition mechanisms, such as molecular docking and molecular dynamics, will therefore be eviscerated, highlighting their advantages and their limitations. Finally, we report several case studies in which computational methods have been applied in drug discovery on neuroinflammation, focusing on the last decade's research.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturles
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
15
|
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins 2021; 89:1607-1617. [PMID: 34533838 PMCID: PMC8726744 DOI: 10.1002/prot.26237] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023]
Abstract
Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Torsten Schwede
- University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Maya Topf
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universit tsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Krzysztof Fidelis
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - John Moult
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA, Department of Cell Biology and Molecular Genetics, University of Maryland
| |
Collapse
|
16
|
Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets. Int J Mol Sci 2021; 22:ijms222312835. [PMID: 34884640 PMCID: PMC8657919 DOI: 10.3390/ijms222312835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference time for applications that require the folding of hundreds of sequences. The prediction of protein structure annotations, such as amino acid distances, can be achieved at a higher speed with existing tools, such as the ProSPr network. Here, we report on important updates to the ProSPr network, its performance in the recent Critical Assessment of Techniques for Protein Structure Prediction (CASP14) competition, and an evaluation of its accuracy dependency on sequence length and multiple sequence alignment depth. We also provide a detailed description of the architecture and the training process, accompanied by reusable code. This work is anticipated to provide a solid foundation for the further development of protein distance prediction tools.
Collapse
|
17
|
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Applying and improving AlphaFold at CASP14. Proteins 2021; 89:1711-1721. [PMID: 34599769 PMCID: PMC9299164 DOI: 10.1002/prot.26257] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the “human” category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end‐to‐end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large‐scale structure prediction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kwon S, Won J, Kryshtafovych A, Seok C. Assessment of protein model structure accuracy estimation in CASP14: Old and new challenges. Proteins 2021; 89:1940-1948. [PMID: 34324227 DOI: 10.1002/prot.26192] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022]
Abstract
In CASP, blind testing of model accuracy estimation methods has been conducted on models submitted by tertiary structure prediction servers. In CASP14, model accuracy estimation results were evaluated in terms of both global and local structure accuracy, as in the previous CASPs. Unlike the previous CASPs that did not show pronounced improvements in performance, the best single-model method (from the Baker group) showed an improved performance in CASP14, particularly in evaluating global structure accuracy when compared to both the best single-model methods in previous CASPs and the best multi-model methods in the current CASP. Although the CASP14 experiment on model accuracy estimation did not deal with the structures generated by AlphaFold2, new challenges that have arisen due to the success of AlphaFold2 are discussed.
Collapse
Affiliation(s)
- Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.,Galux Inc., Seoul, Republic of Korea
| | | | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.,Galux Inc., Seoul, Republic of Korea
| |
Collapse
|