1
|
Zhou H, Yan S. Mechanisms of p53 core tetramer stability mediated by multi-interface interactions: A molecular dynamics study. Arch Biochem Biophys 2025; 763:110210. [PMID: 39603375 DOI: 10.1016/j.abb.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
p53 is a tumor suppressor protein for impeding cancer development and maintaining genetic integrity. The formation of the p53 core tetramer is regulated by multiple cooperative interaction interfaces. To investigate the internal mechanisms of tetramer stability, we performed all-atom molecular dynamics simulations. Our findings indicate that the symmetric interface maintains highly conserved interactions, while the dimer-dimer interface displays notable flexibility. Additionally, we identified a novel salt bridge at the dimer-dimer interface that significantly contributes to the interaction energy. Moreover, the affinity of p53 for DNA is more than twice that of protein-protein interactions, driven primarily by five key residues that form multiple hydrogen bonds. Through independent simulations of the two dimeric models, we provide a theoretical explanation for why only the symmetric dimeric structure has been observed experimentally. The study identifies key regions and residues that contribute to stability at the inter-molecular interaction interfaces within the p53 tetramer, and highlight the important roles of each contact surface in the formation and stability of the tetramer.
Collapse
Affiliation(s)
- Han Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Shiwei Yan
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
2
|
Cao C, Zhang G, Li X, Wang Y, Lü J. Nanomechanical collective vibration of SARS-CoV-2 spike proteins. J Mol Recognit 2024; 37:e3091. [PMID: 38773782 DOI: 10.1002/jmr.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024]
Abstract
The development of effective therapeutics against COVID-19 requires a thorough understanding of the receptor recognition mechanism of the SARS-CoV-2 spike (S) protein. Here the multidomain collective dynamics on the trimer of the spike protein has been analyzed using normal mode analysis (NMA). A common nanomechanical profile was identified in the spike proteins of SARS-CoV-2 and its variants. The profile involves collective vibrations of the receptor-binding domain (RBD) and the N-terminal domain (NTD), which may mediate the physical interaction process. Quantitative analysis of the collective modes suggests a nanomechanical property involving large-scale conformational changes, which explains the difference in receptor binding affinity among different variants. These results support the use of intrinsic global dynamics as a valuable perspective for studying the allosteric and functional mechanisms of the S protein. This approach also provides a low-cost theoretical toolkit for screening potential pathogenic mutations and drug targets.
Collapse
Affiliation(s)
- Changfeng Cao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangxu Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xueling Li
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yadi Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:3157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| |
Collapse
|