1
|
Atanassova MR, Mildenberger J, Hansen MD, Tamm T. Microstructure of Sea Cucumber Parastichopus tremulus Peptide Hydrogels and Bioactivity in Caco-2 Cell Culture Model. Gels 2025; 11:280. [PMID: 40277716 PMCID: PMC12026874 DOI: 10.3390/gels11040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Wider availability of marine proteins for the development of food and biomedical applications has a high importance. Sea cucumber body wall proteins have specific functional properties that could be very promising for such product development. However, protein extraction from whole animals is costly and complex, whereas peptide hydrogel production using biotechnological methods can be considered an economically viable approach. Body-wall derived peptides from sea cucumber Parastichopus tremulus have been suggested as a nontraditional source of potentially edible hydrocolloids. In the current work, four peptides were produced through custom synthesis. Scanning electron microscopy (SEM) of the combined mix of the four peptides (1:1 ratio; 15 mM concentration) in a calcium ion-containing buffer confirmed untargeted self-assembly with long, thick fibrillar formations at a microscale (measured mean cross-section 2.78 µm and length sizes of 26.95 µm). The antioxidant activity of the peptides separately, and in combination (1:1 molar ratio), was studied in vitro through ORAC (values in the range from 279 to 543 µmol TE/g peptide), ABTS (from 80.4 to 1215 µmol TE/g peptide), and DPPH (from 5.2 to 19.9 µmol TE/g) assays, and confirmed for protection against oxidation in a Caco-2 cell culture model. Angiotensin-I converting enzyme inhibitory activity was also confirmed for two of the four peptides, with the highest IC 50 of 7.11 ± 0.84 mg/mL.
Collapse
Affiliation(s)
| | | | | | - Tarmo Tamm
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| |
Collapse
|
2
|
Su Z, Dhusia K, Wu Y. Encoding the space of protein-protein binding interfaces by artificial intelligence. Comput Biol Chem 2024; 110:108080. [PMID: 38643609 DOI: 10.1016/j.compbiolchem.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underlying different binding interfaces could be further captured by artificial intelligence. In order to test this hypothesis, we broke protein-protein binding interfaces into pairs of interacting fragments. We employed a generative model to encode these interface fragment pairs in a low-dimensional latent space. After training, new conformations of interface fragment pairs were generated. We found that, by only using a small number of interface fragment pairs that were generated by artificial intelligence, we were able to guide the assembly of protein complexes into their native conformations. These results demonstrate that the conformational space of fragment pairs at protein-protein binding interfaces is highly degenerate. Features in this degenerate space can be well characterized by artificial intelligence. In summary, our machine learning method will be potentially useful to search for and predict the conformations of unknown protein-protein interactions.
Collapse
Affiliation(s)
- Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN 37212, USA
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
3
|
Jarończyk M, Abagyan R, Totrov M. Software and Databases for Protein-Protein Docking. Methods Mol Biol 2024; 2780:129-138. [PMID: 38987467 DOI: 10.1007/978-1-0716-3985-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.
Collapse
Affiliation(s)
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
4
|
Zięba A, Matosiuk D. Sampling and Scoring in Protein-Protein Docking. Methods Mol Biol 2024; 2780:15-26. [PMID: 38987461 DOI: 10.1007/978-1-0716-3985-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein docking is considered one of the most important techniques supporting experimental proteomics. Recent developments in the field of computer science helped to improve this computational technique so that it better handles the complexity of protein nature. Sampling algorithms are responsible for the generation of numerous protein-protein ensembles. Unfortunately, a primary docking output comprises a set of both near-native poses and decoys. Application of the efficient scoring function helps to differentiate poses with the most favorable properties from those that are very unlikely to represent a natural state of the complex. This chapter explains the importance of sampling and scoring in the process of protein-protein docking. Moreover, it summarizes advances in the field.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Durham J, Zhang J, Humphreys IR, Pei J, Cong Q. Recent advances in predicting and modeling protein-protein interactions. Trends Biochem Sci 2023; 48:527-538. [PMID: 37061423 DOI: 10.1016/j.tibs.2023.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Protein-protein interactions (PPIs) drive biological processes, and disruption of PPIs can cause disease. With recent breakthroughs in structure prediction and a deluge of genomic sequence data, computational methods to predict PPIs and model spatial structures of protein complexes are now approaching the accuracy of experimental approaches for permanent interactions and show promise for elucidating transient interactions. As we describe here, the key to this success is rich evolutionary information deciphered from thousands of homologous sequences that coevolve in interacting partners. This covariation signal, revealed by sophisticated statistical and machine learning (ML) algorithms, predicts physiological interactions. Accurate artificial intelligence (AI)-based modeling of protein structures promises to provide accurate 3D models of PPIs at a proteome-wide scale.
Collapse
Affiliation(s)
- Jesse Durham
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|