1
|
Martinez Grundman JE, Schultz TD, Schlessman JL, Johnson EA, Gillilan RE, Lecomte JTJ. Extremophilic hemoglobins: The structure of Shewanella benthica truncated hemoglobin N. J Biol Chem 2025; 301:108223. [PMID: 39864624 PMCID: PMC11904497 DOI: 10.1016/j.jbc.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N). In the present work, we characterized the structure of this protein (SbHbN) with electronic absorption spectroscopy and X-ray crystallography and inspected its structural integrity under hydrostatic pressure with NMR spectroscopy and small-angle X-ray scattering. We found that SbHbN self-associates weakly in solution and contains an extensive network of hydrophobic tunnels connecting the active site to the surface. Amino acid replacements at the dimeric interface formed by helices G and H in the crystal confirmed this region to be the site of intermolecular interactions. High hydrostatic pressure dissociated the assemblies while the porous subunits resisted unfolding and heme loss. Preservation of structural integrity under pressure is also observed in nonpiezophilic TrHbs, which suggests that this ancient property is derived from functional requirements. Added to the inability of SbHbN to combine reversibly with dioxygen and a propensity to form heme d, the study broadens our perception of the TrHb lineage and the resistance of globins to extreme environmental conditions.
Collapse
Affiliation(s)
| | - Thomas D Schultz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Chang TS, Ding HY, Wang TY, Wu JY, Tsai PW, Suratos KS, Tayo LL, Liu GC, Ting HJ. In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside. Biotechnol Appl Biochem 2024. [PMID: 39449153 DOI: 10.1002/bab.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Guided by in silico analysis tools and biotransformation technology, new derivatives of natural compounds with heightened bioactivities can be explored and synthesized efficiently. In this study, in silico data mining and molecular docking analysis predicted that glucosides of skullcapflavone II (SKII) were new flavonoid compounds and had higher binding potential to oncogenic proteins than SKII. These benefits guided us to perform glycosylation of SKII by utilizing four glycoside hydrolases and five glycosyltransferases (GTs). Findings unveiled that exclusive glycosylation of SKII was achieved solely through the action of GTs, with Bacillus subtilis BsUGT489 exhibiting the highest catalytic glycosylation efficacy. Structure analysis determined the glycosylated product as a novel compound, skullcapflavone II-6'-O-β-glucoside (SKII-G). Significantly, the aqueous solubility of SKII-G exceeded its precursor, SKII, by 272-fold. Furthermore, SKII-G demonstrated noteworthy anti-melanoma activity against human A2058 cells, exhibiting an IC50 value surpassing that of SKII by 1.4-fold. Intriguingly, no substantial cytotoxic effects were observed in a murine macrophage cell line, RAW 264.7. This promising anti-melanoma activity without adverse effects on macrophages suggests that SKII-G could be a potential candidate for further preclinical and clinical studies. The in silico tool-guided synthesis of a new, highly soluble, and potent anti-melanoma glucoside, SKII-G, provides a rational design to facilitate the future discovery of new and bioactive compounds.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- School of Graduate Studies, Mapúa University, Manila, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati, Philippines
| | - Guan-Cheng Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
3
|
Fujii S, Sakaguchi R, Oki H, Kawahara K, Ohkubo T, Fujiyoshi S, Sambongi Y. Contribution of a surface salt bridge to the protein stability of deep-sea Shewanella benthica cytochrome c'. J Struct Biol 2023; 215:108031. [PMID: 37758155 DOI: 10.1016/j.jsb.2023.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Two homologous cytochromes c', SBCP and SVCP, from deep-sea Shewanella benthica and Shewanella violacea respectively exhibit only nine surface amino acid substitutions, along with one at the N-terminus. Despite the small sequence difference, SBCP is thermally more stable than SVCP. Here, we examined the thermal stability of SBCP variants, each containing one of the nine substituted residues in SVCP, and found that the SBCP K87V variant was the most destabilized. We then determined the X-ray crystal structure of the SBCP K87V variant at a resolution of 2.1 Å. The variant retains a four-helix bundle structure similar to the wild-type, but notable differences are observed in the hydration structure around the mutation site. Instead of forming of the intrahelical salt bridge between Lys-87 and Asp-91 in the wild-type, a clathrate-like hydration around Val-87 through a hydrogen bond network with the nearby amino acid residues is observed. This network potentially enhances the ordering of surrounding water molecules, leading to an entropic destabilization of the protein. These results suggest that the unfavorable hydrophobic hydration environment around Val-87 and the inability to form the Asp-91-mediated salt bridge contribute to the observed difference in stability between SBCP and SVCP. These findings will be useful in future protein engineering for controlling protein stability through the manipulation of surface intrahelical salt bridges.
Collapse
Affiliation(s)
- Sotaro Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK.
| | - Riku Sakaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroya Oki
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan; Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - So Fujiyoshi
- The IDEC Institute, Hiroshima University, Higashi-Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
4
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|