1
|
Fesenko I, Sahakyan H, Dhyani R, Shabalina SA, Storz G, Koonin EV. The hidden bacterial microproteome. Mol Cell 2025; 85:1024-1041.e6. [PMID: 39978337 PMCID: PMC11890958 DOI: 10.1016/j.molcel.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/05/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Microproteins encoded by small open reading frames comprise the "dark matter" of proteomes. Although microproteins have been detected in diverse organisms from all three domains of life, many more remain to be identified, and only a few have been functionally characterized. In this comprehensive study of intergenic small open reading frames (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identify 67,297 clusters of ismORFs subject to purifying selection. Expression of tagged Escherichia coli microproteins is detected for 11 of the 16 tested, validating the predictions. Although the ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins, some globular folds, oligomeric structures, and possible interactions with proteins encoded by neighboring genes are predicted. Complete information on the predicted microprotein families, including evidence of transcription and translation, and structure predictions are available as an easily searchable resource for investigation of microprotein functions.
Collapse
Affiliation(s)
- Igor Fesenko
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajat Dhyani
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
2
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
3
|
Aldrovandi S, Fajardo Castro J, Ullrich K, Karger A, Luria V, Tautz D. Expression of Random Sequences and de novo Evolved Genes From the Mouse in Human Cells Reveals Functional Diversity and Specificity. Genome Biol Evol 2024; 16:evae175. [PMID: 39663928 PMCID: PMC11635099 DOI: 10.1093/gbe/evae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 12/13/2024] Open
Abstract
Proteins that emerge de novo from noncoding DNA could negatively or positively influence cellular physiology in the sense of providing a possible adaptive advantage. Here, we employ two approaches to study such effects in a human cell line by expressing random sequences and mouse de novo genes that lack homologs in the human genome. We show that both approaches lead to differential growth effects of the cell clones dependent on the sequences they express. For the random sequences, 53% of the clones decreased in frequency, and about 8% increased in frequency in a joint growth experiment. Of the 14 mouse de novo genes tested in a similar joint growth experiment, 10 decreased, and 3 increased in frequency. When individually analysed, each mouse de novo gene triggers a unique transcriptomic response in the human cells, indicating mostly specific rather than generalized effects. Structural analysis of the de novo gene open reading frames (ORFs) reveals a range of intrinsic disorder scores and/or foldability into alpha-helices or beta sheets, but these do not correlate with their effects on the growth of the cells. Our results indicate that de novo evolved ORFs could easily become integrated into cellular regulatory pathways, since most interact with components of these pathways and could therefore become directly subject to positive selection if the general conditions allow this.
Collapse
Affiliation(s)
- Silvia Aldrovandi
- Max-Planck Institute for Evolutionary Biology, Dept. Evol. Genetics, Plön 24306, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Johana Fajardo Castro
- Max-Planck Institute for Evolutionary Biology, Dept. Evol. Genetics, Plön 24306, Germany
- Science and Technology Academy, University of Kiel, Kiel 24118, Germany
| | - Kristian Ullrich
- Max-Planck Institute for Evolutionary Biology, Dept. Evol. Genetics, Plön 24306, Germany
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Dept. Evol. Genetics, Plön 24306, Germany
| |
Collapse
|
4
|
Wróblewski K, Kmiecik S. Integrating AlphaFold pLDDT Scores into CABS-flex for enhanced protein flexibility simulations. Comput Struct Biotechnol J 2024; 23:4350-4356. [PMID: 39697677 PMCID: PMC11653142 DOI: 10.1016/j.csbj.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
CABS-flex is a well-established method for fast protein flexibility simulations, offering an effective balance between computational efficiency and accuracy in modeling protein dynamics. To further enhance its predictive capabilities, we propose incorporating AlphaFold's predicted Local Distance Difference Test (pLDDT) scores into CABS-flex simulations. The pLDDT scores, which reflect the confidence of AlphaFold's structural predictions, were integrated with secondary structure information to refine the restraint schemes used in the simulations. We tested this approach on the ATLAS database, which includes molecular dynamics (MD) simulations of nearly 1400 proteins. The results showed improved alignment of flexibility predictions with the MD data compared to previous restraint schemes. The integration of pLDDT scores also offers a new perspective on protein flexibility by incorporating structural confidence into the analysis. This development enhances the utility of CABS-flex for investigating protein dynamics and motion.
Collapse
Affiliation(s)
- Karol Wróblewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02–089, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02–089, Poland
| |
Collapse
|
5
|
Middendorf L, Ravi Iyengar B, Eicholt LA. Sequence, Structure, and Functional Space of Drosophila De Novo Proteins. Genome Biol Evol 2024; 16:evae176. [PMID: 39212966 PMCID: PMC11363682 DOI: 10.1093/gbe/evae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During de novo emergence, new protein coding genes emerge from previously nongenic sequences. The de novo proteins they encode are dissimilar in composition and predicted biochemical properties to conserved proteins. However, functional de novo proteins indeed exist. Both identification of functional de novo proteins and their structural characterization are experimentally laborious. To identify functional and structured de novo proteins in silico, we applied recently developed machine learning based tools and found that most de novo proteins are indeed different from conserved proteins both in their structure and sequence. However, some de novo proteins are predicted to adopt known protein folds, participate in cellular reactions, and to form biomolecular condensates. Apart from broadening our understanding of de novo protein evolution, our study also provides a large set of testable hypotheses for focused experimental studies on structure and function of de novo proteins in Drosophila.
Collapse
Affiliation(s)
- Lasse Middendorf
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Lars A Eicholt
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| |
Collapse
|
6
|
Lebherz MK, Iyengar BR, Bornberg-Bauer E. Modeling Length Changes in De Novo Open Reading Frames during Neutral Evolution. Genome Biol Evol 2024; 16:evae129. [PMID: 38879874 PMCID: PMC11339603 DOI: 10.1093/gbe/evae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
For protein coding genes to emerge de novo from a non-genic DNA, the DNA sequence must gain an open reading frame (ORF) and the ability to be transcribed. The newborn de novo gene can further evolve to accumulate changes in its sequence. Consequently, it can also elongate or shrink with time. Existing literature shows that older de novo genes have longer ORF, but it is not clear if they elongated with time or remained of the same length since their inception. To address this question we developed a mathematical model of ORF elongation as a Markov-jump process, and show that ORFs tend to keep their length in short evolutionary timescales. We also show that if change occurs it is likely to be a truncation. Our genomics and transcriptomics data analyses of seven Drosophila melanogaster populations are also in agreement with the model's prediction. We conclude that selection could facilitate ORF length extension that may explain why longer ORFs were observed in old de novo genes in studies analysing longer evolutionary time scales. Alternatively, shorter ORFs may be purged because they may be less likely to yield functional proteins.
Collapse
Affiliation(s)
- Marie Kristin Lebherz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster 48149, Germany
| | - Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster 48149, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster 48149, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen 72076, Germany
| |
Collapse
|
7
|
Chen J, Li Q, Xia S, Arsala D, Sosa D, Wang D, Long M. The Rapid Evolution of De Novo Proteins in Structure and Complex. Genome Biol Evol 2024; 16:evae107. [PMID: 38753069 PMCID: PMC11149777 DOI: 10.1093/gbe/evae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Recent studies in the rice genome-wide have established that de novo genes, evolving from noncoding sequences, enhance protein diversity through a stepwise process. However, the pattern and rate of their evolution in protein structure over time remain unclear. Here, we addressed these issues within a surprisingly short evolutionary timescale (<1 million years for 97% of Oryza de novo genes) with comparative approaches to gene duplicates. We found that de novo genes evolve faster than gene duplicates in the intrinsically disordered regions (such as random coils), secondary structure elements (such as α helix and β strand), hydrophobicity, and molecular recognition features. In de novo proteins, specifically, we observed an 8% to 14% decay in random coils and intrinsically disordered region lengths and a 2.3% to 6.5% increase in structured elements, hydrophobicity, and molecular recognition features, per million years on average. These patterns of structural evolution align with changes in amino acid composition over time as well. We also revealed higher positive charges but smaller molecular weights for de novo proteins than duplicates. Tertiary structure predictions showed that most de novo proteins, though not typically well folded on their own, readily form low-energy and compact complexes with other proteins facilitated by extensive residue contacts and conformational flexibility, suggesting a faster-binding scenario in de novo proteins to promote interaction. These analyses illuminate a rapid evolution of protein structure in de novo genes in rice genomes, originating from noncoding sequences, highlighting their quick transformation into active, protein complex-forming components within a remarkably short evolutionary timeframe.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Qingrong Li
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|