• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4594166)   Today's Articles (3965)   Subscriber (49325)
For: Chou KC, Zhang CT, Kézdy FJ. A vector projection approach to predicting HIV protease cleavage sites in proteins. Proteins 1993;16:195-204. [PMID: 8332607 DOI: 10.1002/prot.340160206] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Number Cited by Other Article(s)
1
Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem 2022;98:107671. [PMID: 35429835 PMCID: PMC8958254 DOI: 10.1016/j.compbiolchem.2022.107671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
2
Chou KC. Distorted Key Theory and its Implication for Drug Development. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164617666191025101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
3
Song J, Wang Y, Li F, Akutsu T, Rawlings ND, Webb GI, Chou KC. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 2020;20:638-658. [PMID: 29897410 PMCID: PMC6556904 DOI: 10.1093/bib/bby028] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/02/2018] [Indexed: 01/03/2023]  Open
4
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020;295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
5
Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH, Chou KC. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 2018;110:239-246. [DOI: 10.1016/j.ygeno.2017.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023]
6
Song J, Wang Y, Li F, Akutsu T, Rawlings ND, Webb GI, Chou KC. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 2018. [DOI: 10.1093/bib/bby028 epub ahead of print].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
7
Jia J, Liu Z, Xiao X, Liu B, Chou KC. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 2016;394:223-230. [DOI: 10.1016/j.jtbi.2016.01.020] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
8
Chen W, Feng P, Ding H, Lin H, Chou KC. Using deformation energy to analyze nucleosome positioning in genomes. Genomics 2016;107:69-75. [DOI: 10.1016/j.ygeno.2015.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/06/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
9
Rögnvaldsson T, You L, Garwicz D. Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview. Expert Rev Mol Diagn 2014;7:435-51. [PMID: 17620050 DOI: 10.1586/14737159.7.4.435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
10
NS2B/3 proteolysis at the C-prM junction of the tick-borne encephalitis virus polyprotein is highly membrane dependent. Virus Res 2012;168:48-55. [PMID: 22727684 PMCID: PMC3437442 DOI: 10.1016/j.virusres.2012.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/21/2022]
11
Study of Inhibitors Against SARS Coronavirus by Computational Approaches. VIRAL PROTEASES AND ANTIVIRAL PROTEASE INHIBITOR THERAPY 2009. [PMCID: PMC7122585 DOI: 10.1007/978-90-481-2348-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
12
HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem 2008;375:388-90. [PMID: 18249180 DOI: 10.1016/j.ab.2008.01.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
13
Liang GZ, Li SZ. A new sequence representation as applied in better specificity elucidation for human immunodeficiency virus type 1 protease. Biopolymers 2007;88:401-12. [PMID: 17206631 DOI: 10.1002/bip.20669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
14
Lumini A, Nanni L. Machine learning for HIV-1 protease cleavage site prediction. Pattern Recognit Lett 2006. [DOI: 10.1016/j.patrec.2006.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
15
Cai YD, Liu XJ, Xu XB, Chou KC. Support Vector Machines for predicting HIV protease cleavage sites in protein. J Comput Chem 2002;23:267-74. [PMID: 11924738 DOI: 10.1002/jcc.10017] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
16
Cai YD, Yu H, Chou KC. Artificial neural network method for predicting HIV protease cleavage sites in protein. JOURNAL OF PROTEIN CHEMISTRY 1998;17:607-15. [PMID: 9853675 DOI: 10.1007/bf02780962] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
17
Cai YD, Yu H, Chou KC. Artificial neural network method for predicting the specificity of GalNAc-transferase. JOURNAL OF PROTEIN CHEMISTRY 1997;16:689-700. [PMID: 9330227 DOI: 10.1023/a:1026306520790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
18
Sun ZR, Zhang CT, Wu FH, Peng LW. A vector projection method for predicting supersecondary motifs. JOURNAL OF PROTEIN CHEMISTRY 1996;15:721-9. [PMID: 9008295 DOI: 10.1007/bf01887145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
19
Chou KC, Tomasselli AG, Reardon IM, Heinrikson RL. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method. Proteins 1996;24:51-72. [PMID: 8628733 DOI: 10.1002/(sici)1097-0134(199601)24:1<51::aid-prot4>3.0.co;2-r] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
20
Chou KC. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Sci 1995;4:1365-83. [PMID: 7670379 PMCID: PMC2143175 DOI: 10.1002/pro.5560040712] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
21
Chou KC, Zhang CT, Kézdy FJ, Poorman RA. A vector projection method for predicting the specificity of GalNAc-transferase. Proteins 1995;21:118-26. [PMID: 7777486 DOI: 10.1002/prot.340210205] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
22
Tomasselli AG, Sarcich JL, Barrett LJ, Reardon IM, Howe WJ, Evans DB, Sharma SK, Heinrikson RL. Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease. Protein Sci 1993;2:2167-76. [PMID: 7507754 PMCID: PMC2142316 DOI: 10.1002/pro.5560021216] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA