1
|
Renton M, Willse A, Aradhya C, Tyre A, Head G. Simulated herbicide mixtures delay both specialist monogenic and generalist polygenic resistance evolution in weeds. PEST MANAGEMENT SCIENCE 2024; 80:5983-5994. [PMID: 39096081 DOI: 10.1002/ps.8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Evolution of herbicide-resistant weed populations is a major challenge to world food production. Using different herbicides in rotation and/or using different herbicides together as mixtures are strategies that may delay the selection of resistance. This study used simulation modelling to investigate whether mixtures and rotations can delay the selection of both generalist polygenic and specialist monogenic herbicide resistance, and whether these strategies are more likely to lead to the selection of generalist resistance in weed types with varying biological characteristics. RESULTS Our simulations suggest that well-designed effective herbicide mixtures should delay evolution of both polygenic and monogenic resistance better than rotations and single herbicides across all weed types. Both mixture and rotation strategies increased the likelihood of polygenic resistance compared to single-herbicide use, and the likelihood of polygenic resistance increased as the fecundity and competitiveness of the weed increased. Whether monogenic or polygenic resistance occurred in each case depended most on the relative initial allele frequencies. We did not find that herbicide mixtures were more likely than rotations to lead to the selection of generalist polygenic resistance. The simulated efficacy of mixtures over rotations decreased if components were used at reduced rates or when individual components had already been used solo. CONCLUSION Herbicide rotations and particularly well-designed mixtures should delay evolution of both polygenic and monogenic resistance, especially if used as part of an effective integrated weed management programme. However, herbicide mixtures and rotations may also increase the risk that resistance will be generalist polygenic rather than specialist monogenic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Renton
- School of Biological Sciences and Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Alan Willse
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | | | - Andrew Tyre
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | - Graham Head
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| |
Collapse
|
2
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Hulme PE, Liu W. Species prevalence and plant traits discriminate between herbicide resistant and susceptible weeds. PEST MANAGEMENT SCIENCE 2022; 78:313-320. [PMID: 34498809 DOI: 10.1002/ps.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Herbicide resistant weeds pose one of the most significant global challenges to sustainable food and fiber production. Plant traits are assumed to play a significant role in determining whether a weed is likely to evolve herbicide resistance but there have been few quantitative assessments to date. There is therefore an urgent need to investigate both the demographic and evolutionary characteristics of weeds to predict which weed species are likely to evolve herbicide resistance. Here, the discriminatory power of multiple plant traits was examined by comparing herbicide resistant and herbicide susceptible weeds in the United States. RESULTS Despite the taxonomic and agronomic similarity of herbicide resistant and susceptible weeds in the United States, differences between these groups were captured by a relatively small set of explanatory variables. Herbicide resistant weeds were found across more states than susceptible species and this suggests widespread weeds also happen to be more problematic in crops and therefore specifically targeted for weed control. In terms of traits, herbicide resistant species were more likely to be outcrossing, have unisexual flowers and be wind pollinated as well as have larger chromosome numbers and seed size than herbicide susceptible weeds. CONCLUSIONS A trait-based approach to understanding herbicide resistance confirms many assumptions as to the genetic attributes that make a weed more likely to evolve herbicide resistance. Scope therefore exists to build better risk assessment tools to identify future herbicide resistance hazards by incorporating plant traits, environmental tolerances, and evidence of herbicide resistance elsewhere in the world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - Wenting Liu
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
4
|
Holmes KH, Lindquist JL, Rebarber R, Werle R, Yerka M, Tenhumberg B. Modeling the evolution of herbicide resistance in weed species with a complex life cycle. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02473. [PMID: 34652876 DOI: 10.1002/eap.2473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
A growing number of weed species have evolved resistance to herbicides in recent years, which causes an immense financial burden to farmers. An increasingly popular method of weed control is the adoption of crops that are resistant to specific herbicides, which allows farmers to apply the herbicide during the growing season without harming the crop. If such crops are planted in the presence of closely related weed species, it is possible that resistance genes could transfer from the crop species to feral populations of the wild species via gene flow and become stably introgressed under ongoing selective pressure by the herbicide. We use a density-dependent matrix model to evaluate the effect of planting such crops on the evolution of herbicide resistance under a range of management scenarios. Our model expands on previous simulation studies by considering weed species with a more complex life cycle (perennial, rhizomatous weed species), studying the effect of environmental variation in herbicide effectiveness, and evaluating the role of common simplifying genetic assumptions on resistance evolution. Our model predictions are qualitatively similar to previous modeling studies using species with a simpler life cycle, which is, crop rotation in combination with rotation of herbicide site of action effectively controls weed populations and slows the evolution of herbicide resistance. We find that ignoring the effect of environmental variation can lead to an over- or under-prediction of the speed of resistance evolution. The effect of environmental variation in herbicide effectiveness depends on the resistance allele frequency in the weed population at the beginning of the simulation. Finally, we find that degree of dominance and ploidy level have a much larger effect on the predicted speed of resistance evolution compared to the rate of gene flow.
Collapse
Affiliation(s)
- K Harrison Holmes
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - John L Lindquist
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Richard Rebarber
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Melinda Yerka
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada-Reno, Reno, Nevada, 89557, USA
| | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
5
|
Cockerton HM, Kaundun SS, Nguyen L, Hutchings SJ, Dale RP, Howell A, Neve P. Fitness Cost Associated With Enhanced EPSPS Gene Copy Number and Glyphosate Resistance in an Amaranthus tuberculatus Population. FRONTIERS IN PLANT SCIENCE 2021; 12:651381. [PMID: 34267768 PMCID: PMC8276266 DOI: 10.3389/fpls.2021.651381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The evolution of resistance to pesticides in agricultural systems provides an opportunity to study the fitness costs and benefits of novel adaptive traits. Here, we studied a population of Amaranthus tuberculatus (common waterhemp), which has evolved resistance to glyphosate. The growth and fitness of seed families with contrasting levels of glyphosate resistance was assessed in the absence of glyphosate to determine their ability to compete for resources under intra- and interspecific competition. We identified a positive correlation between the level of glyphosate resistance and gene copy number for the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) glyphosate target, thus identifying gene amplification as the mechanism of resistance within the population. Resistant A. tuberculatus plants were found to have a lower competitive response when compared to the susceptible phenotypes with 2.76 glyphosate resistant plants being required to have an equal competitive effect as a single susceptible plant. A growth trade-off was associated with the gene amplification mechanism under intra-phenotypic competition where 20 extra gene copies were associated with a 26.5 % reduction in dry biomass. Interestingly, this growth trade-off was mitigated when assessed under interspecific competition from maize.
Collapse
Affiliation(s)
- Helen M. Cockerton
- NIAB EMR, Kent, United Kingdom
- Warwick Crop Centre, The University of Warwick Wellesbourne, Warwick, United Kingdom
| | - Shiv S. Kaundun
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | | | - Sarah Jane Hutchings
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Richard P. Dale
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Anushka Howell
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Paul Neve
- Warwick Crop Centre, The University of Warwick Wellesbourne, Warwick, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
- Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| |
Collapse
|
6
|
Beres ZT, Owen MDK, Snow AA. No evidence for early fitness penalty in glyphosate-resistant biotypes of Conyza canadensis: Common garden experiments in the absence of glyphosate. Ecol Evol 2019; 9:13678-13689. [PMID: 31938474 PMCID: PMC6953693 DOI: 10.1002/ece3.5741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022] Open
Abstract
Strong selection from herbicides has led to the rapid evolution of herbicide-resistant weeds, greatly complicating weed management efforts worldwide. In particular, overreliance on glyphosate, the active ingredient in RoundUp®, has spurred the evolution of resistance to this herbicide in ≥40 species. Previously, we reported that Conyza canadensis (horseweed) has evolved extreme resistance to glyphosate, surviving at 40× the original 1× effective dosage. Here, we tested for underlying fitness effects of glyphosate resistance to better understand whether resistance could persist indefinitely in this self-pollinating, annual weed. We sampled seeds from a single maternal plant ("biotype") at each of 26 horseweed populations in Iowa, representing nine susceptible biotypes (S), eight with low-level resistance (LR), and nine with extreme resistance (ER). In 2016 and 2017, we compared early growth rates and bolting dates of these biotypes in common garden experiments at two sites near Ames, Iowa. Nested ANOVAs showed that, as a group, ER biotypes attained similar or larger rosette size after 6 weeks compared to S or LR biotypes, which were similar to each other in size. Also, ER biotypes bolted 1-2 weeks earlier than S or LR biotypes. These fitness-related traits also varied among biotypes within the same resistance category, and time to bolting was inversely correlated with rosette size across all biotypes. Disease symptoms affected 40% of all plants in 2016 and 78% in 2017, so we did not attempt to measure lifetime fecundity. In both years, the frequency of disease symptoms was greatest in S biotypes and similar in LR versus ER biotypes. Overall, our findings indicate there are no early growth penalty and possibly no lifetime fitness penalty associated with glyphosate resistance, including extremely strong resistance. We conclude that glyphosate resistance is likely to persist in horseweed populations, with or without continued selection pressure from exposure to glyphosate.
Collapse
Affiliation(s)
- Zachery T. Beres
- Department of Evolution, Ecology, and Organismal BiologyOhio State UniversityColumbusOHUSA
| | | | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal BiologyOhio State UniversityColumbusOHUSA
| |
Collapse
|
7
|
Comont D, Hicks H, Crook L, Hull R, Cocciantelli E, Hadfield J, Childs D, Freckleton R, Neve P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. THE NEW PHYTOLOGIST 2019; 223:1584-1594. [PMID: 30883786 DOI: 10.1111/nph.15800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The evolution of resistance to herbicides is a striking example of rapid, human-directed adaptation with major consequences for food production. Most studies of herbicide resistance are performed reactively and focus on post hoc determination of resistance mechanisms following the evolution of field resistance. If the evolution of resistance can be anticipated, however, pro-active management to slow or prevent resistance traits evolving can be advocated. We report a national-scale study that combines population monitoring, glyphosate sensitivity assays, quantitative genetics and epidemiological analyses to pro-actively identify the prerequisites for adaptive evolution (directional selection and heritable genetic variation) to the world's most widely used herbicide (glyphosate) in a major, economically damaging weed species, Alopecurus myosuroides. Results highlighted pronounced, heritable variability in glyphosate sensitivity amongst UK A. myosuroides populations. We demonstrated a direct epidemiological link between historical glyphosate selection and current population-level sensitivity, and show that current field populations respond to further glyphosate selection. This study provides a novel, pro-active assessment of adaptive potential for herbicide resistance, and provides compelling evidence of directional selection for glyphosate insensitivity in advance of reports of field resistance. The epidemiological approach developed can provide a basis for further pro-active study of resistance evolution across pesticide resistance disciplines.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Helen Hicks
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Laura Crook
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Richard Hull
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Elise Cocciantelli
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Jarrod Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Dylan Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Robert Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Paul Neve
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
8
|
Cousens RD, Fournier-Level A. Herbicide resistance costs: what are we actually measuring and why? PEST MANAGEMENT SCIENCE 2018; 74:1539-1546. [PMID: 29205805 DOI: 10.1002/ps.4819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 05/12/2023]
Abstract
Despite the considerable research efforts invested over the years to measure the fitness costs of herbicide resistance, these have rarely been used to inform a predictive theory about the fate of resistance once the herbicide is discontinued. One reason for this may be the reductive focus on relative fitness of two genotypes as a single measure of differential performance. Although the extent of variation in relative fitness between resistant and susceptible plants has not been assessed consistently, we know enough about plant physiology and ecology not to reduce it to a single fixed value. Research must therefore consider carefully the relevance of the experimental environment, the life stage and the choice of metric when measuring fitness-related traits. The reason most often given for measuring the cost of resistance, prediction of the impacts of management options on population dynamics, cannot be addressed using arbitrary components of fitness or a fixed value of relative fitness. To inform management options, the measurement of traits that capture the relevant processes and the main causes of their variation are required. With an emphasis on the benefit of field experiments measured over multiple time points and seasons, we highlight examples of studies that have made significant advances in this direction. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roger D Cousens
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Küpper A, Manmathan HK, Giacomini D, Patterson EL, McCloskey WB, Gaines TA. Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth ( Amaranthus palmeri) Populations Using Genotyping-by-sequencing (GBS). FRONTIERS IN PLANT SCIENCE 2018; 9:29. [PMID: 29422910 PMCID: PMC5788914 DOI: 10.3389/fpls.2018.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 05/25/2023]
Abstract
Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and soybean production systems. Originally native to the Southwest, the species has spread throughout the country. In 2004 a population of A. palmeri was identified with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the degree of genetic relatedness among eight different populations of GR and glyphosate-susceptible (GS) A. palmeri from various geographic regions in the United States by analyzing patterns of phylogeography and diversity to ascertain whether resistance evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility. With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis, Bayesian model-based clustering, and pairwise comparisons of genetic distances were conducted. A GR population from Tennessee and two GS populations from Georgia and Arizona were identified as genetically distinct while the remaining GS populations from Kansas, Arizona, and Nebraska clustered together with two GR populations from Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS populations from Kansas and Arizona followed by the GR population from Georgia. GR populations from Georgia and Tennessee were genetically distinct from each other. No isolation by distance was detected and A. palmeri was revealed to be a species with high genetic diversity. The data suggest the following two possible scenarios: either glyphosate resistance was introduced to the Arizona locality from the east, or resistance evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee localities most likely evolved separately. Thus, modern farmers need to continue to diversify weed management practices and prevent seed dispersal to mitigate herbicide resistance evolution in A. palmeri.
Collapse
Affiliation(s)
- Anita Küpper
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Harish K. Manmathan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Darci Giacomini
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Eric L. Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | | | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Somerville GJ, Powles SB, Walsh MJ, Renton M. How do spatial heterogeneity and dispersal in weed population models affect predictions of herbicide resistance evolution? Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Yang X, Beres ZT, Jin L, Parrish JT, Zhao W, Mackey D, Snow AA. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana. PLoS One 2017; 12:e0175820. [PMID: 28426703 PMCID: PMC5398549 DOI: 10.1371/journal.pone.0175820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide's target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Zachery T. Beres
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Jason T. Parrish
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Wanying Zhao
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Werle R, Tenhumberg B, Lindquist JL. Modeling shattercane dynamics in herbicide-tolerant grain sorghum cropping systems. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Busi R, Powles SB. Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum. PEST MANAGEMENT SCIENCE 2016; 72:1664-72. [PMID: 26864800 DOI: 10.1002/ps.4253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. RESULTS This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. CONCLUSIONS In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Lamichhane JR, Devos Y, Beckie HJ, Owen MDK, Tillie P, Messéan A, Kudsk P. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 2016; 37:459-475. [PMID: 27173634 DOI: 10.1080/07388551.2016.1180588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
Collapse
Affiliation(s)
| | - Yann Devos
- b GMO Unit, European Food Safety Authority (EFSA) , Parma , Italy
| | - Hugh J Beckie
- c Agriculture and Agri-Food Canada , Saskatoon , Saskatchewan , Canada
| | | | - Pascal Tillie
- e European Commission-Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS) , Seville , Spain
| | - Antoine Messéan
- a Eco-Innov Research Unit, INRA , Thiverval-Grignon , France
| | - Per Kudsk
- f Department of Agroecology , Aarhus University , Slagelse , Denmark
| |
Collapse
|
15
|
Goh SS, Vila-Aiub MM, Busi R, Powles SB. Glyphosate resistance in Echinochloa colona: phenotypic characterisation and quantification of selection intensity. PEST MANAGEMENT SCIENCE 2016; 72:67-73. [PMID: 25779335 DOI: 10.1002/ps.4005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND A population of Echinochloa colona infesting agricultural fields in the northern region of Western Australia evolved glyphosate resistance after 10 years of glyphosate selection. This study identified two phenotypic (susceptible S versus resistant R) lines from within a segregating glyphosate-resistant population. Estimation of survival, growth and reproductive rates of the phenotypes in response to glyphosate selection helped to characterise the level of resistance, fitness and the selection intensity for glyphosate in this species. RESULTS Estimations of LD(50) (lethal dose) and GR(50) (growth rate) showed an eightfold glyphosate resistance in this population. The resistant index based on the estimation of seed number (SY(n50)) showed a 13-fold resistance. As a result of linear combination of plant survival and fecundity rates, plant fitness values of 0.2 and 0.8 were estimated for the S and R phenotypes when exposed to the low dose of 270 g glyphosate ha(-1). At the recommended dose of 540 g glyphosate ha(-1) , fitness significantly decreased (fivefold) in S plants but remained markedly similar (0.7) in plants of the R phenotype. Thus, the calculated selection intensity (SI) at 540 g glyphosate ha(-1) was much greater (SI = 17) than at 270 g glyphosate ha(-1) (SI = 4). CONCLUSIONS The assessment of plant survival and fecundity in response to glyphosate selection in the S and R phenotypes allowed a greater accuracy in the estimation of population fitness of both phenotypes and thus of glyphosate selection intensity in E. colona. The estimation of seed number or mass of phenotypes under herbicide selection is a true ecological measure of resistance with implications for herbicide resistance evolution.
Collapse
Affiliation(s)
- Sou Sheng Goh
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| | - Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| |
Collapse
|
16
|
Renton M, Busi R, Neve P, Thornby D, Vila-Aiub M. Herbicide resistance modelling: past, present and future. PEST MANAGEMENT SCIENCE 2014; 70:1394-1404. [PMID: 24585689 DOI: 10.1002/ps.3773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/22/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance.
Collapse
Affiliation(s)
- Michael Renton
- School of Plant Biology, Australian Herbicide Resistance Initiative and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | |
Collapse
|
17
|
Lagator M, Vogwill T, Mead A, Colegrave N, Neve P. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2013; 198:938-945. [PMID: 23432427 DOI: 10.1111/nph.12195] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The widespread evolution of resistance to herbicides is a pressing issue in global agriculture. Evolutionary principles and practices are key to the management of this threat to global food security. The application of mixtures of herbicides has been advocated as an anti-resistance strategy, without substantial empirical support for its validation. We evolved experimentally populations of the unicellular green chlorophyte, Chlamydomonas reinhardtii, to minimum inhibitory concentrations (MICs) of single-herbicide modes of action and to pair-wise and three-way mixtures between different herbicides at various total combined doses. Herbicide mixtures were most effective when each component was applied at or close to its MIC. When doses were high, increasing the number of mixture components was also effective in reducing the evolution of resistance. Employing mixtures at low combined doses did not retard resistance evolution, even accelerating the evolution of resistance to some components. At low doses, increasing the number of herbicides in the mixture tended to select for more generalist resistance (cross-resistance). Our results reinforce findings from the antibiotic resistance literature and confirm that herbicide mixtures can be very effective for resistance management, but that mixtures should only be employed where the economic and environmental context permits the applications of high combined doses.
Collapse
Affiliation(s)
- Mato Lagator
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Vogwill
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nick Colegrave
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Paul Neve
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
18
|
Schneider KA, Kim Y. Genetic hitchhiking under heterogeneous spatial selection pressures. PLoS One 2013; 8:e61742. [PMID: 23637897 PMCID: PMC3634857 DOI: 10.1371/journal.pone.0061742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/17/2013] [Indexed: 12/31/2022] Open
Abstract
During adaptive evolutionary processes substantial heterogeneity in selective pressure might act across local habitats in sympatry. Examples are selection for drug resistance in malaria or herbicide resistance in weeds. In such setups standard population-genetic assumptions (homogeneous constant selection pressures, random mating etc.) are likely to be violated. To avoid misinferences on the strength and pattern of natural selection it is therefore necessary to adjust population-genetic theory to meet the specifics driving adaptive processes in particular organisms. We introduce a deterministic model in which selection acts heterogeneously on a population of haploid individuals across different patches over which the population randomly disperses every generation. A fixed proportion of individuals mates exclusively within patches, whereas the rest mates randomly across all patches. We study how the allele frequencies at neutral markers are affected by the spread of a beneficial mutation at a closely linked locus (genetic hitchhiking). We provide an analytical solution for the frequency change and the expected heterozygosity at the neutral locus after a single copy of a beneficial mutation became fixed. We furthermore provide approximations of these solutions which allow for more obvious interpretations. In addition, we validate the results by stochastic simulations. Our results show that the application of standard population-genetic theory is accurate as long as differences across selective environments are moderate. However, if selective differences are substantial, as for drug resistance in malaria, herbicide resistance in weeds, or insecticide resistance in agriculture, it is necessary to adapt available theory to the specifics of particular organisms.
Collapse
Affiliation(s)
- Kristan A Schneider
- Department Fakultät Mathematik/Naturwissenschaften/Informatik, University of Applied Sciences Mittweida, Mittweida, Germany.
| | | |
Collapse
|
19
|
Lagator M, Vogwill T, Colegrave N, Neve P. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii. Evol Appl 2012; 6:197-206. [PMID: 23467494 PMCID: PMC3586617 DOI: 10.1111/j.1752-4571.2012.00276.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/02/2012] [Indexed: 11/28/2022] Open
Abstract
Cycling pesticides has been proposed as a means of retarding the evolution of resistance, but its efficacy has rarely been empirically tested. We evolved populations of Chlamydomonas reinhardtii in the presence of three herbicides: atrazine, glyphosate and carbetamide. Populations were exposed to a weekly, biweekly and triweekly cycling between all three pairwise combinations of herbicides and continuously to each of the three herbicides. We explored the impacts of herbicide cycling on the rate of resistance evolution, the level of resistance selected, the cost of resistance and the degree of generality (cross-resistance) observed. Herbicide cycling resulted in a diversity of outcomes: preventing evolution of resistance for some combinations of herbicides, having no impacts for others and increasing rates of resistance evolution in some instances. Weekly cycling of atrazine and carbetamide resulted in selection of a generalist population. This population had a higher level of resistance, and this generalist resistance was associated with a cost. The level of resistance selected did not vary amongst other regimes. Costs of resistance were generally highest when cycling was more frequent. Our data suggest that the effects of herbicide cycling on the evolution of resistance may be more complex and less favourable than generally assumed.
Collapse
Affiliation(s)
- Mato Lagator
- School of Life Sciences, University of Warwick Coventry, UK
| | | | | | | |
Collapse
|
20
|
Scientific Opinion on an application (EFSA‐GMO‐NL‐2005‐24) for the placing on the market of the herbicide tolerant genetically modified soybean 40‐3‐2 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Beckie HJ. Herbicide-resistant weed management: focus on glyphosate. PEST MANAGEMENT SCIENCE 2011; 67:1037-48. [PMID: 21548004 DOI: 10.1002/ps.2195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 05/22/2023]
Abstract
This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds.
Collapse
Affiliation(s)
- Hugh J Beckie
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
24
|
Renton M, Diggle A, Manalil S, Powles S. Does cutting herbicide rates threaten the sustainability of weed management in cropping systems? J Theor Biol 2011; 283:14-27. [DOI: 10.1016/j.jtbi.2011.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
|
25
|
Owen MDK, Young BG, Shaw DR, Wilson RG, Jordan DL, Dixon PM, Weller SC. Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives. PEST MANAGEMENT SCIENCE 2011; 67:747-57. [PMID: 21452168 DOI: 10.1002/ps.2159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 01/03/2011] [Accepted: 01/30/2011] [Indexed: 05/30/2023]
Abstract
A six-state, 5 year field project was initiated in 2006 to study weed management methods that foster the sustainability of genetically engineered (GE) glyphosate-resistant (GR) crop systems. The benchmark study field-scale experiments were initiated following a survey, conducted in the winter of 2005-2006, of farmer opinions on weed management practices and their views on GR weeds and management tactics. The main survey findings supported the premise that growers were generally less aware of the significance of evolved herbicide resistance and did not have a high recognition of the strong selection pressure from herbicides on the evolution of herbicide-resistant (HR) weeds. The results of the benchmark study survey indicated that there are educational challenges to implement sustainable GR-based crop systems and helped guide the development of the field-scale benchmark study. Paramount is the need to develop consistent and clearly articulated science-based management recommendations that enable farmers to reduce the potential for HR weeds. This paper provides background perspectives about the use of GR crops, the impact of these crops and an overview of different opinions about the use of GR crops on agriculture and society, as well as defining how the benchmark study will address these issues.
Collapse
Affiliation(s)
- Micheal D K Owen
- Agronomy Department, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gressel J. Evolving understanding of the evolution of herbicide resistance. PEST MANAGEMENT SCIENCE 2009; 65:1164-73. [PMID: 19743401 DOI: 10.1002/ps.1842] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A greater number of, and more varied, modes of resistance have evolved in weeds than in other pests because the usage of herbicides is far more extensive than the usage of other pesticides, and because weed seed output is so great. The discovery and development of selective herbicides are more problematic than those of insecticides and fungicides, as these must only differentiate between plant and insect or pathogen. Herbicides are typically selective between plants, meaning that before deployment there are already some crops possessing natural herbicide resistance that weeds could evolve. The concepts of the evolution of resistance and the mechanisms of delaying resistance have evolved as nature has continually evolved new types of resistance. Major gene target-site mutations were the first types to evolve, with initial consideration devoted mainly to them, but slowly 'creeping' resistance, gradually accruing increasing levels of resistance, has become a major force owing to an incremental accumulation of genetic changes in weed populations. Weeds have evolved mechanisms unknown even in antibiotic as well as other drug and pesticide resistances. It is even possible that cases of epigenetic 'remembered' resistances may have appeared.
Collapse
Affiliation(s)
- Jonathan Gressel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Busi R, Powles SB. Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity (Edinb) 2009; 103:318-25. [PMID: 19491925 DOI: 10.1038/hdy.2009.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The majority of the documented cases of field-evolved herbicide-resistant weed biotypes established that single major genes confer glyphosate resistance. However, the contribution of minor genes endowing substantial plant survival at sublethal herbicide doses may be a potential complementary path to herbicide resistance evolution in weed populations under selection. Here, we subjected a number of susceptible individuals of Lolium rigidum to recurrent glyphosate selection to test the potential for sublethal glyphosate doses to additively select for glyphosate resistance. After 3-4 cycles of glyphosate selection in two distinct environments, the progenies of the initially susceptible population were shifted toward glyphosate resistance. The results indicate progressive enrichment of minor gene trait(s) contributing toward plant survival in the glyphosate-selected progenies. After three generations of selection, the estimated LD(50) values were doubled compared with the original population and up to 33% plant survival was obtained in the glyphosate-selected progeny at the recommended glyphosate label rate. This level of resistance probably was the maximum shift achievable with sublethal glyphosate dose selection in this small population. Cross-pollination was a crucial factor enabling the rapid rate of accumulation of minor glyphosate resistance gene trait(s) that are likely to be present at a relatively high frequency in a small susceptible population. The mechanistic basis of the moderate glyphosate resistance level selected by sublethal glyphosate doses remains unknown and warrants future research. Studying the main factors influencing the evolution of resistant weed populations is crucial for understanding, predicting and managing herbicide resistance.
Collapse
Affiliation(s)
- R Busi
- Western Australian Herbicide Resistance Initiative, School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
| | | |
Collapse
|
28
|
Duke SO, Powles SB. Glyphosate-resistant weeds and crops. Editorial. PEST MANAGEMENT SCIENCE 2008; 64:317-8. [PMID: 18340651 DOI: 10.1002/ps.1561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|