1
|
Duménil C, Spitaler U, Rehermann G, Bianchi F, Favaro R, Castellan I, Schmidt S, Eisenstecken D, Becher PG, Angeli S. Yeast-based attract-and-kill strategies for Drosophila suzukii management without disrupting honey bee activity. PLoS One 2025; 20:e0323653. [PMID: 40388535 PMCID: PMC12088520 DOI: 10.1371/journal.pone.0323653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/12/2025] [Indexed: 05/21/2025] Open
Abstract
Attract-and-kill strategies are effective, sustainable pest control methods. Formulations combining the insecticide spinosad, at a lower dose than conventional methods, with the Drosophila-associated yeast Hanseniaspora uvarum have shown promising results. Recently, Saccharomycopsis vini was identified as the most attractive yeast for ovipositing females. In this study, the potential of S. vini for use in attract-and-kill formulations against D. suzukii was evaluated alongside H. uvarum. Behavioural assays demonstrated that D. suzukii preferred S. vini when both yeasts are simultaneously present in a close range setting but was attracted to both in long range attraction assays. In efficacy assays, S. vini and H. uvarum were equally efficient at reducing oviposition and increasing mortality in formulation with spinosad. Offering yeast formulations at the foraging sites of trained honey bees did not stimulate more feeding when compared to sugar syrup. The characterisation of the organic volatile compounds released from the cultures demonstrated that S. vini and H. uvarum were composed of overlapping as well as distinct chemicals. The antennally active compounds ethyl acetate and ethyl propanoate were abundant in the more attractive S. vini and H. uvarum, while the compounds 3-methyl-1-butanol and 2-methylthiolan-3-one were more abundant in the less attractive S. cerevisiae. These chemicals may be further studied as possible attractants or repellents for D. suzukii. We propose S. vini as a new yeast with potential for use in integrated pest management, with a distinctive volatile profile while maintaining a similar efficacy compared to H. uvarum against D. suzukii. Neither H. uvarum nor S. vini stimulated honey bee foraging behaviour, suggesting that both yeast-based attract-and-kill formulations pose a low non-target risk to honey bees.
Collapse
Affiliation(s)
- Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Urban Spitaler
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Silvia Schmidt
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Paul G. Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| |
Collapse
|
2
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024; 50:830-846. [PMID: 38691267 PMCID: PMC11543737 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
3
|
Tabuloc CA, Carlson CR, Ganjisaffar F, Truong CC, Chen CH, Lewald KM, Hidalgo S, Nicola NL, Jones CE, Sial AA, Zalom FG, Chiu JC. Transcriptome analysis of Drosophila suzukii reveals molecular mechanisms conferring pyrethroid and spinosad resistance. Sci Rep 2024; 14:19867. [PMID: 39191909 PMCID: PMC11349914 DOI: 10.1038/s41598-024-70037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Drosophila suzukii lay eggs in soft-skinned, ripening fruits, making this insect a serious threat to berry production. Since its 2008 introduction into North America, growers have used insecticides, such as pyrethroids and spinosads, as the primary approach for D. suzukii management, resulting in development of insecticide resistance in this pest. This study sought to identify the molecular mechanisms conferring insecticide resistance in these populations. We sequenced the transcriptomes of two pyrethroid- and two spinosad-resistant isofemale lines. In both pyrethroid-resistant lines and one spinosad-resistant line, we identified overexpression of metabolic genes that are implicated in resistance in other insect pests. In the other spinosad-resistant line, we observed an overexpression of cuticular genes that have been linked to resistance. Our findings enabled the development of molecular diagnostics that we used to confirm persistence of insecticide resistance in California, U.S.A. To validate these findings, we leveraged D. melanogaster mutants with reduced expression of metabolic or cuticular genes that were found to be upregulated in resistant D. suzukii to demonstrate that these genes are involved in promoting resistance. This study is the first to characterize the molecular mechanisms of insecticide resistance in D. suzukii and provides insights into how current management practices can be optimized.
Collapse
Affiliation(s)
- Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Curtis R Carlson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Ching-Hsuan Chen
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Nicole L Nicola
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Cera E Jones
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, California, USA.
| |
Collapse
|
4
|
van der Merwe M, Jukes MD, Knox C, Moore SD, Hill MP. Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens 2023; 12:1237. [PMID: 37887753 PMCID: PMC10610352 DOI: 10.3390/pathogens12101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour and development. A series of detached fruit bioassays were performed to determine whether the combination of yeast with CrleGV enhances its efficacy. These assays included determining the optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use alongside CrleGV was determined to be 106 cells·mL-1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there was an observed decrease in larval survival. In future studies, field trials will be conducted with combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory findings can be replicated in orchard conditions.
Collapse
Affiliation(s)
- Marcel van der Merwe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Michael D. Jukes
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
| | - Sean D. Moore
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
- Citrus Research International, P.O. Box 5095, Walmer, Gqeberha 6065, South Africa
| | - Martin P. Hill
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| |
Collapse
|
5
|
Jones R, Eady PE, Goddard MR, Fountain MT. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. INSECTS 2022; 13:995. [PMID: 36354819 PMCID: PMC9696471 DOI: 10.3390/insects13110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Drosophila suzukii (Matsumura), is a globally invasive pest of soft and stone fruit. To survive winter in temperate zones it enters a reproductive diapause in a morphologically distinct phenotype. Phagostimulant baits can be combined with insecticides in attract-and-kill strategies for control. We investigated the effectiveness of single yeast species and combinations of co-fermented yeast phagostimulant baits when combined with insecticides in laboratory assays against both summer- and winter-morph D. suzukii. Candida zemplininia or Hanseniaspora uvarum + C. zemplininia combined with lambda-cyhalothrin or cyantraniliprole, and H. uvarum combined with cyantraniliprole caused significantly higher mortality in winter- compared to summer-morph D. suzukii. Additionally, lambda-cyhalothrin combined with M. pulcherrima + H. uvarum resulted in greater mortality compared to single yeasts, H. uvarum for both summer- and winter-morphs and C. zemplininia for summer-morphs. M. pulcherrima + H. uvarum with spinosad significantly reduced the time-to-kill (50%) of summer-morphs compared to insecticide alone. Most yeast-based baits were comparable in terms of attract-and-kill efficacy to Combi-protec, a commercially available bait, although M. pulcherrima or H. uvarum + C. zemplininia in with cyantraniliprole were less effective. Our study suggests that yeast phagostimulants in attract-and-kill strategies should be adjusted for summer- and winter-morph D. suzukii for more effective control.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
- NIAB, East Malling, Kent ME19 6BJ, UK
| | - Paul E. Eady
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | | | |
Collapse
|
6
|
Ganjisaffar F, Demkovich MR, Chiu JC, Zalom FG. Characterization of Field-Derived Drosophila suzukii (Diptera: Drosophilidae) Resistance to Pyrethroids in California Berry Production. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1676-1684. [PMID: 35957586 DOI: 10.1093/jee/toac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The spotted-wing drosophila, Drosophila suzukii (Matsumura), is a global economic pest of berry crops and stone fruit. Since management of this pest primarily relies on calendar insecticide applications, and field-derived resistance to spinosad has already been documented in California caneberry production, there is significant concern for development of resistance to other insecticides. In this study, susceptibility of D. suzukii populations collected from caneberry and strawberry fields to two pyrethroids, zeta-cypermethrin, and bifenthrin, was assessed in 2019 and 2020. Resistance to both pyrethroids were observed in flies from all sampling sites. For flies collected from caneberries in 2019, the LC50 values ranged from 4.5 to 5.2 mg liter-1 with RR50s ranging from 7.5- to 8.7-fold. Our 2020 assays showed that susceptibility of flies to the discriminating dose of zeta-cypermethrin decreased significantly as the season progressed. For flies collected from strawberries in 2020, the LC50s ranged from 19.0 to 36.1 mg liter-1 and from 30.3 to 90.7 mg liter-1 for zeta-cypermethrin and bifenthrin, respectively. The RR50 values varied from 19.0- to 36.1-fold for zeta-cypermethrin and from 15.9- to 47.7-fold for bifenthrin. This study is the first report of field-derived pyrethroid resistance in D. suzukii from two major California berry production areas. Adoption of informed insecticide resistance management practices would be essential to prolong the efficacy of products available to control D. suzukii. Future molecular work is needed to unravel the underlying genetic mechanisms conferring the observed pyrethroid resistance and to develop robust diagnostics that can inform integrated pest management of this pest.
Collapse
Affiliation(s)
- Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Mark R Demkovich
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Rehermann G, Spitaler U, Sahle K, Cossu CS, Donne LD, Bianchi F, Eisenstecken D, Angeli S, Schmidt S, Becher PG. Behavioral manipulation of Drosophila suzukii for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves. PEST MANAGEMENT SCIENCE 2022; 78:896-904. [PMID: 34716651 DOI: 10.1002/ps.6699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasive pest, Drosophila suzukii attacks fresh soft-skinned fruit. Broad-spectrum insecticides are implemented for control but there is a need to reduce environmental risks and insecticide residues on fruits. Hanseniaspora uvarum is a yeast frequently found on ripe fruits and associated with D. suzukii. We aim to exploit the ecological association and attraction of D. suzukii to H. uvarum by developing an attract-and-kill strategy, with spray-application on canopy but not fruit. We therefore investigated D. suzukii attraction, egg-laying and mortality when exposed to insecticidal yeast-based formulations. RESULTS Hanseniaspora uvarum strongly attracted D. suzukii when applied on leaves of grapevine, Vitis vinifera. Notably, this attractiveness was competitive to ripe grape berries that were susceptible to D. suzukii infestation. Moreover, adding H. uvarum enhanced the efficacy of insecticidal formulations against D. suzukii. Flies exposed to leaves treated with yeast-insecticide formulations showed higher mortality and laid a lower number of eggs compared to flies exposed to insecticide alone. In a wind tunnel, all treatments containing H. uvarum alone or in combination with insecticides, caused similar upwind flight and landing at the odor source, which provides evidence that the addition of insecticide did not reduce D. suzukii attraction to yeast. CONCLUSION Hanseniaspora uvarum can be used to manipulate the behavior of D. suzukii by attracting flies to insecticide formulations. Yeast attraction is competitive to grape berries and improves insecticide effectiveness, suggesting that sprays covering canopy only, could reduce residues on fruit without compromising management efficacy.
Collapse
Affiliation(s)
- Guillermo Rehermann
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karolina Sahle
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Carlo S Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
| | - Lorenz Delle Donne
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer (Ora), Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer (Ora), Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer (Ora), Italy
| | - Paul G Becher
- Chemical Ecology - Horticulture, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
8
|
Spitaler U, Cossu CS, Delle Donne L, Bianchi F, Rehermann G, Eisenstecken D, Castellan I, Duménil C, Angeli S, Robatscher P, Becher PG, Koschier EH, Schmidt S. Field and greenhouse application of an attract-and-kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes. PEST MANAGEMENT SCIENCE 2022; 78:1287-1295. [PMID: 34854220 PMCID: PMC9299924 DOI: 10.1002/ps.6748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The invasive insect Drosophila suzukii (Matsumura) is an important pest of several red grape varieties. The yeast Hanseniaspora uvarum (Niehaus), which is associated with D. suzukii, strongly attracts flies and stimulates them to feed on yeast-laden food. In the present study, a formulation based on H. uvarum culture with spinosad insecticide was applied to the foliage of vineyards and control of D. suzukii was compared to applying spinosad to the whole plant. After successful H. uvarum and insecticide application in the vineyard, we tested additional H. uvarum-based formulations with spinosad in a greenhouse to determine their capacity to control D. suzukii. RESULTS Application of the H. uvarum-spinosad formulation at 36.4 g of spinosad per hectare reduced the D. suzukii field infestation at the same rate as applying 120 g of spinosad per hectare and prevented spinosad residues on grapes. Leaves treated with H. uvarum and spinosad in the field and transferred to a laboratory assay caused high mortality to flies and reduced the number of eggs laid on fruits. Formulations with spinosad applied in the greenhouse showed that both H. uvarum culture and the yeast cell-free supernatant of a centrifuged culture increased fly mortality and reduced the number of eggs laid compared to the unsprayed control. CONCLUSION In comparison to typical spinosad spray applications, the use of H. uvarum in combination with spinosad as an attract-and-kill formulation against D. suzukii reduces pesticide residues on the fruits by targeting the treatment to the canopy and decreasing the amount of insecticide per hectare without compromising control efficacy.
Collapse
Affiliation(s)
- Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Carlo S Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| | - Lorenz Delle Donne
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Guillermo Rehermann
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Irene Castellan
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Claire Duménil
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Sergio Angeli
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Paul G Becher
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elisabeth H Koschier
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| |
Collapse
|
9
|
Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. INSECTS 2022; 13:insects13030243. [PMID: 35323541 PMCID: PMC8954841 DOI: 10.3390/insects13030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
Collapse
|
10
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
11
|
Fanning P, Lanka S, Mermer S, Collins J, Van Timmeren S, Andrews H, Hesler S, Loeb G, Drummond F, Wiman NG, Walton V, Sial AA, Isaacs R. Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, Drosophila suzukii (Matsumura). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1638-1646. [PMID: 34021580 DOI: 10.1093/jee/toab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a key insect pest of berries globally, causing lost revenues and increased production costs associated with applications of insecticides. The insecticides utilized are commonly broad-spectrum pyrethroids, organophosphates, or carbamates in conventionally managed fields and spinosad in organically managed fields. Adoption of more selective insecticides has been limited due to their lower residual activity, and the requirement that some must be ingested to be effective. We investigated the use of feeding stimulants for D. suzukii as a method to improve longevity and efficacy in a range of insecticides. In laboratory bioassays, sugar increased the efficacy of all chemical classes tested; however, the inclusion of yeast only showed a benefit with malathion. Feeding stimulants had a limited effect in some cases under field conditions. Similarly, infestation in field plots and a semifield bioassay showed no significant decreases in infestation with the inclusion of feeding stimulants for the insecticides tested in these trials. We discuss the implications of these findings for managing D. suzukii in fruit crops to help ensure the harvest of marketable fruit.
Collapse
Affiliation(s)
- Philip Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Srinivas Lanka
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Judith Collins
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Stephen Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Francis Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Nik G Wiman
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Vaughn Walton
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Bing XL, Winkler J, Gerlach J, Loeb G, Buchon N. Identification of natural pathogens from wild Drosophila suzukii. PEST MANAGEMENT SCIENCE 2021; 77:1594-1606. [PMID: 33342014 DOI: 10.1002/ps.6235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/15/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura, 1931) (spotted wing drosophila), an invasive species, has recently become a significant global pest of soft-skinned fruits such as berries. Unlike other Drosophila species, female D. suzukii have evolved a specialized sharp, serrated ovipositor that pierces and penetrates ripe and ripening fruits, causing them to lose commercial value and preventing their sale. A first step for the development of biological control agents for pest management may be achieved through the identification of microbes infectious for D. suzukii in the wild. RESULTS We first determined that D. suzukii is susceptible to chemicals commonly used to rear Drosophilids in the laboratory and established a diet able to sustain healthy D. suzukii growth. Using this diet, we demonstrated that of 25 species of culturable bacteria and fungi isolated from field-collected D. suzukii, eight microbes decreased host survival when injected. Three of the eight bacteria (Alcaligenes faecalis, Achromobacter spanius and Serratia marcescens) were acutely pathogenic to both D. suzukii and Drosophila melanogaster adults by injection. Feeding of these bacteria resulted in susceptibility only in larvae. CONCLUSION We successfully identified multiple microbes from field-collected D. suzukii that are pathogenic to both larvae and adults through different routes of infection, some of which could be candidates for biocontrol of this species. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jessica Winkler
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Joseph Gerlach
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Gregory Loeb
- Department of Entomology, Cornell University, Geneva, NY, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Ðurović G, Alawamleh A, Carlin S, Maddalena G, Guzzon R, Mazzoni V, Dalton DT, Walton VM, Suckling DM, Butler RC, Angeli S, De Cristofaro A, Anfora G. Liquid Baits with Oenococcus oeni Increase Captures of Drosophila suzukii. INSECTS 2021; 12:insects12010066. [PMID: 33450937 PMCID: PMC7828427 DOI: 10.3390/insects12010066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Among the challenges arising from climate change and the transformation of agroecosystems is that agricultural production is heavily affected by invasive insect species. Invasive insects can establish in new areas where their development can progress due to a suitable climate and lack of natural enemies. Farmers have few options to mitigate those insects’ attacks. Current control tactics using pesticides must be replaced with more sustainable methods to counter invasive insect species. We approached the control of the invasive spotted-wing drosophila Drosophila suzukii, using a baiting system that manipulates insect behavior without use of toxic or non-sustainable chemicals. The results of our work are utilized for the monitoring and mass trapping of this devastating invasive species. In our innovative smart-design trap system, we use odors that attract flies and decrease damage in open field scenarios. Our trapping system can efficiently detect the first spring arrival of D. suzukii in agricultural fields and as a such, represents a good early monitoring tool. We conducted four years of laboratory and open-field trials in different berry crops. As a source of odor attraction, we used a mixture of wine, apple cider vinegar, and different commercially available strains of lactic acid bacteria. Abstract The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is an invasive alien species in Europe and the Americas, where it is a severe pest of horticultural crops, including soft fruits and wine grapes. The conventional approach to controlling infestations of SWD involves the use of insecticides, but the frequency of application for population management is undesirable. Consequently, alternative strategies are urgently needed. Effective and improved trapping is important as an early risk detection tool. This study aimed to improve Droskidrink® (DD), a commercially available attractant for SWD. We focused on the chemical and behavioral effects of adding the bacterium Oenococcus oeni (Garvie) to DD and used a new trap design to enhance the effects of attractive lures. We demonstrate that microbial volatile compounds produced by O. oeni are responsible for the increase in the attractiveness of the bait and could be later utilized for the development of a better trapping system. Our results showed that the attractiveness of DD was increased up to two-fold by the addition of commercially available O. oeni when combined with an innovative trap design. The new trap-bait combination increased the number of male and especially female catches at low population densities.
Collapse
Affiliation(s)
- Gordana Ðurović
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Amani Alawamleh
- Biobest Group NV, Ilse Velden, 2260 Westerlo, Belgium;
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Silvia Carlin
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Giuseppe Maddalena
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Raffaele Guzzon
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
| | - Daniel T. Dalton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA; (D.T.D.); (V.M.W.)
| | - David M. Suckling
- Technology Transfer Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (R.G.); (D.M.S.)
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ruth C. Butler
- Biosecurity Group, The New Zealand Institute for Plant and Food Research Limited, PB 4704, Christchurch 8140, New Zealand;
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy;
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
- Correspondence:
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (G.Ð.); (S.C.); (V.M.); (G.A.)
- Centre Agriculture Food Environment (C3A), University of Trento, 38100 San Michele all’Adige, Italy
| |
Collapse
|
14
|
Bianchi F, Spitaler U, Castellan I, Cossu CS, Brigadoi T, Duménil C, Angeli S, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Persistence of a Yeast-Based ( Hanseniaspora uvarum) Attract-and-Kill Formulation against Drosophila suzukii on Grape Leaves. INSECTS 2020; 11:insects11110810. [PMID: 33217960 PMCID: PMC7698740 DOI: 10.3390/insects11110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
The production of phagostimulant and attractive volatile organic compounds (VOCs) by yeasts can be exploited to improve the efficacy of attract-and-kill formulations against the spotted wing drosophila (SWD). This study evaluated the persistence over one week of a yeast-based formulation under greenhouse conditions. Potted grape plants were treated with: (i) potato dextrose broth (PDB), (ii) PDB containing spinosad (PDB + S), and (iii) H. uvarum fermentation broth grown on PDB containing spinosad (H. u. + S). Laboratory trials were performed to determine the survival and the oviposition rate of SWD after exposure to treated leaves. Ion-exchange chromatography was performed to measure carbohydrates, sugar alcohols, and organic acids on leaf surfaces, while amino acids were assessed through liquid chromatography-mass-spectrometry. Additionally, the VOCs released by plants treated with H.uvarum were collected via closed-loop-stripping analysis and compared to those emitted by untreated leaves. A higher mortality was observed for adult SWDs in contact with H. uvarum containing spinosad compared to PDB containing spinosad. Generally, a decrease in the amounts of non-volatile compounds was observed over time, though numerous nutrients were still present one week after treatment. The application of the yeast-based formulation induced the emission of VOCs by the treated leaves. The concentration of 2-phenylethanol, one of the main VOCs emitted by yeasts, decreased over time. These findings describe the presence of potential phagostimulants and compounds attractive to SWD in a yeast-based attract-and-kill formulation and demonstrate the efficacy of the formulation over one week.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Irene Castellan
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Carlo S. Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Timothy Brigadoi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Claire Duménil
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Correspondence:
| |
Collapse
|
15
|
Bianchi F, Spitaler U, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Comparative Lipidomics of Different Yeast Species Associated to Drosophila suzukii. Metabolites 2020; 10:E352. [PMID: 32872268 PMCID: PMC7569767 DOI: 10.3390/metabo10090352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Yeasts constitute a dietary source for the spotted wing drosophila (SWD) and produce compounds that attract these flies. The study of the chemical composition of the yeast communities associated with SWD should therefore help to understand the relationship between the biology of the insect and the yeast's metabolism. In the present study, the lipidome of five yeast species isolated from grapes infested by SWD (three Hanseniaspora uvarum strains, Candida sp., Issatchenkia terricola, Metschnikowia pulcherrima and Saccharomycopsis vini) and a laboratory strain of Saccharomyces cerevisiae was explored using an untargeted approach. Additionally, the lipid profile of two species, S. cerevisiae and H. uvarum, which were reported to elicit different responses on SWD flies based on feeding and behavioral trials, was compared with a chemical enrichment approach. Overall, 171 lipids were annotated. The yeast species could be distinguished from each other based on their lipid profile, except for the three strains of H. uvarum, which were very similar to each other. The chemical enrichment analysis emphasized diversities between S. cerevisiae and H. uvarum, that could not be detected based on their global lipid profile. The information concerning differences between species in their lipidome may be of interest to future entomological studies concerning the yeast-insect interaction and could help to explain the responses of SWD to diverse yeast species.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
| | - Daniela Eisenstecken
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|
16
|
Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles. J Chem Ecol 2019; 46:688-698. [DOI: 10.1007/s10886-019-01139-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
17
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
18
|
Yeast Species, Strains, and Growth Media Mediate Attraction of Drosophila suzukii (Diptera: Drosophilidae). INSECTS 2019; 10:insects10080228. [PMID: 31370207 PMCID: PMC6722520 DOI: 10.3390/insects10080228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
Specific ecological interactions between insects and microbes have potential in the development of targeted pest monitoring or control techniques for the spotted wing drosophilid, Drosophila suzukii (Matsumura), an exotic invasive pest of soft fruit. To evaluate D. suzukii attraction to yeast species from preferred types of fruit, three yeasts were isolated from blackberry fruit and two yeasts from raspberry fruit and used to bait simple plastic bottle traps. Saccharomyces cerevisiae and Hanseniaspora uvarum were identified from blackberries, whereas a different H. uvarum strain was identified from raspberry. Yeast identification was based on sequence analysis of the D1/D2 domain of the large subunit 26S rRNA gene. Commercial baker’s yeast (S. cerevisiae) was similar or more effective for the capture of D. suzukii males and females than yeasts isolated from blackberry or raspberry when grown in sucrose. However, when grown in corn syrup, a strain of S. cerevisiae from blackberry captured the highest number of females and a strain of H. uvarum isolated from raspberry captured high numbers of males and females. Species of Candida, Hanseniaspora, and Pichia from a laboratory yeast collection did not outperform baker’s yeast in pairwise tests when grown in sucrose solution or yeast-peptone-dextrose medium. The raspberry strain of H. uvarum grown in corn syrup outperformed S. cerevisiae grown in sucrose, in terms of captures in baited traps under laboratory conditions. We conclude that yeast species, strain, and growth medium can have a marked influence on D. suzukii attraction to baited traps, a finding that could assist in the development of yeast-related monitoring or control techniques targeted at this pest.
Collapse
|
19
|
Bellutti N, Gallmetzer A, Innerebner G, Schmidt S, Zelger R, Koschier EH. Dietary yeast affects preference and performance in Drosophila suzukii. JOURNAL OF PEST SCIENCE 2018; 91:651-660. [PMID: 29568250 PMCID: PMC5847167 DOI: 10.1007/s10340-017-0932-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/10/2023]
Abstract
Yeasts play an important role in nutrition physiology and host attraction of many Drosophila species, and associations with various yeast species are documented for several drosophilid flies. The pest Drosophila suzukii (Matsumura) has a predominant association with the yeast Hanseniaspora uvarum. However, research has not been conducted on the nutritional physiology of the yeasts associated with D. suzukii (spotted wing drosophila). Therefore, in this study, we determined whether dietary yeast was nutritionally relevant and whether yeast species closely associated with D. suzukii positively affected life-history traits. Our results confirm a crucial role of dietary yeast in the larval development and survival of D. suzukii. Furthermore, we found specific effects of the closely associated yeast species H. uvarum and Candida sp. on larval survival. Observations of the egg-laying behaviour of D. suzukii on cherry fruits artificially colonised with different yeast species revealed that the number of eggs laid increased on fruits colonised with Candida sp. and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Nathalie Bellutti
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Gallmetzer
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Gerd Innerebner
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Silvia Schmidt
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Roland Zelger
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Elisabeth Helene Koschier
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
Pavlova AK, Dahlmann M, Hauck M, Reineke A. Laboratory Bioassays with Three Different Substrates to Test the Efficacy of Insecticides against Various Stages of Drosophila suzukii (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:8. [PMID: 28042104 PMCID: PMC5270394 DOI: 10.1093/jisesa/iew100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/17/2016] [Indexed: 05/27/2023]
Abstract
Rapid worldwide spread and polyphagous nature of the spotted wing Drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) calls for efficient and selective control strategies to prevent severe economic losses in various fruit crops. The use of insecticides is one option for management of this invasive pest insect. Efficacy of insecticides is usually assessed first in laboratory bioassays, which are compounded by the cryptic nature of D. suzukii larvae and the fact that fruits used in bioassays often start to rot and dissolve before larvae have reached the adult stage. Here, we report on laboratory bioassays using three different types of substrates allowing a thorough screening of insecticides for their potential effects against D. suzukii eggs, larvae and adults. Suitability of our bioassays was validated in an assessment of the efficacy of four bioinsecticides and one synthetic insecticide against various developmental stages of D. suzukii Water-apple juice agar used as a bioassay substrate allowed egg counting and observation of larval development due to its transparency, while apple-nutrition medium allowed complete metamorphosis. Use of grape berries in bioassays made it possible to assess effects of an insecticide present on a fruit's surface on oviposition and larval hatch from eggs. Insecticides tested in these three different bioassays with acetamiprid, spinosad or natural pyrethrins as active ingredients achieved a significant D. suzukii control if they were applied before egg deposition. Number of adult flies was significantly reduced if the bioassay medium was treated with an azadirachtin A containing insecticide both before or after egg deposition.
Collapse
Affiliation(s)
| | - Melanie Dahlmann
- Geisenheim University Institute of Phytomedicine, Geisenheim, D-65366, Germany
| | - Mirjam Hauck
- Geisenheim University Institute of Phytomedicine, Geisenheim, D-65366, Germany
| | - Annette Reineke
- Geisenheim University Institute of Phytomedicine, Geisenheim, D-65366, Germany
- Corresponding author: e-mail:
| |
Collapse
|
21
|
Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P, Becher PG. Enhanced yeast feeding following mating facilitates control of the invasive fruit pestDrosophila suzukii. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12688] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boyd A. Mori
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Alix B. Whitener
- Department of Entomology; WSU Tree Fruit Research and Extension Center; 1100 N. Western Avenue Wenatchee WA 98801 USA
| | - Yannick Leinweber
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Santosh Revadi
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Elizabeth H. Beers
- Department of Entomology; WSU Tree Fruit Research and Extension Center; 1100 N. Western Avenue Wenatchee WA 98801 USA
| | - Peter Witzgall
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| |
Collapse
|