1
|
Sun Y, Tao S, Zhang W, Jiang B, Dai HY, Liu BS, Zhang YJ, Kong XD, Zhao J, Bai LX. Transcriptome profile analysis reveals the emamectin benzoate-induced genes associated with olfaction and metabolic detoxification in Spodoptera exigua Hübner (Lepidoptera: noctuidae). ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2052190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Simin Tao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Wen Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Han-Yang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiang-dong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Li-Xin Bai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Yu H, Yang CJ, Li N, Zhao Y, Chen ZM, Yi SJ, Li ZQ, Adang MJ, Huang GH. Novel strategies for the biocontrol of noctuid pests (Lepidoptera) based on improving ascovirus infectivity using Bacillus thuringiensis. INSECT SCIENCE 2021; 28:1452-1467. [PMID: 33017097 DOI: 10.1111/1744-7917.12875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Identifying novel biocontrol agents and developing new strategies are urgent goals in insect pest biocontrol. Ascoviruses are potential competent insect viruses that may be developed into bioinsecticides, but this aim is impeded by their poor oral infectivity. To improve the per os infectivity of ascovirus, Bacillus thuringiensis kurstaki (Btk) was employed as a helper to damage the midgut of lepidopteran larvae (Helicoverpa armigera, Mythimna separata, Spodoptera frugiperda, and S. litura) in formulations with Heliothis virescens ascovirus isolates (HvAV-3h and HvAV-3j). Btk and ascovirus mixtures (Btk/HvAV-3h and Btk/HvAV-3j) were fed to insect larvae (3rd instar). With the exception of S. frugiperda larvae, which exhibited low mortality after ingesting Btk, the larvae of the other tested species showed three types of response to feeding on the formulas: type I, the tested larvae (H. armigera) were killed by Btk infection so quickly that insufficient time and resources remained for ascoviral invasion; type II, both Btk and the ascovirus were depleted by their competition, such that neither was successfully released or colonized the tissue; type III, Btk was eliminated by the ascovirus, and the ascovirus achieved systemic infection in the tested larvae. The feeding of Btk/ascovirus formulas led to a great reduction in larval diet consumption and resulted in a significant decrease in the emergence rate of H. armigera, M. separata, and S. litura larvae, which suggested that the formulas exerted marked oral control effects on both the contemporary individuals and the next generation of these tested pest species.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ying Zhao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhuang-Mei Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Si-Jia Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
3
|
Yu H, Ou-Yang YY, Yang CJ, Li N, Nakai M, Huang GH. 3H-31, A Non-structural Protein of Heliothis virescens ascovirus 3h, Inhibits the Host Larval Cathepsin and Chitinase Activities. Virol Sin 2021; 36:1036-1051. [PMID: 33830433 DOI: 10.1007/s12250-021-00374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
3h-31 of Heliothis virescens ascovirus 3h (HvAV-3h) is a highly conserved gene of ascoviruses. As an early gene of HvAV-3h, 3h-31 codes for a non-structural protein (3H-31) of HvAV-3h. In the study, 3h-31 was initially transcribed and expressed at 3 h post-infection (hpi) in the infected Spodoptera exigua fat body cells (SeFB). 3h-31 was further inserted into the bacmid of Autographa californica nucleopolyhedrovirus (AcMNPV) to generate an infectious baculovirus (AcMNPV-31). In vivo experiments showed that budded virus production and viral DNA replication decreased with the expression of 3H-31, and lucent tubular structures were found around the virogenic stroma in the AcMNPV-31-infected SeFB cells. In vivo, both LD50 and LD90 values of AcMNPV-31 were significantly higher than those of the wild-type AcMNPV (AcMNPV-wt) in third instar S. exigua larvae. An interesting finding was that the liquefaction of the larvae killed by the infection of AcMNPV-31 was delayed. Chitinase and cathepsin activities of AcMNPV-31-infected larvae were significantly lower than those of AcMNPV-wt-infected larvae. The possible regulatory function of the chitinase and cathepsin for 3H-31 was further confirmed by RNAi, which showed that larval cathepsin activity was significantly upregulated, but chitinase activity was not significantly changed due to the RNAi of 3h-31. Based on the obtained results, we assumed that the function of 3H-31 was associated with the inhibition of host larval chitinase and cathepsin activities, so as to restrain the hosts in their larval stages.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Li ZQ, Song XH, Wang M, Wang S, Huang GH. Melanization induced by Heliothis virescens ascovirus 3h promotes viral replication. INSECT SCIENCE 2021; 28:472-484. [PMID: 32243720 DOI: 10.1111/1744-7917.12786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Melanization is an important innate immune defense mechanism of insects, which can kill invading pathogens. Most pathogens, for their survival and reproduction, inhibit the melanization of the host. Interestingly, our results suggested that after infection with Heliothis virescens ascovirus 3h (HvAV-3h), the speed of melanization in infected Spodoptera exigua larval hemolymph was accelerated and that the phenoloxidase (PO) activity of hemolymph in larvae infected with HvAV-3h increased significantly (1.20-fold at 96 hpi, 1.52-fold at 120 hpi, 1.23-fold at 144 hpi, 1.12-fold at 168 hpi). The transcription level of the gene encoding S. exigua prophenoloxidase-1 (SePPO-1 gene) was upregulated dramatically in the fat body during the middle stage of infection. In addition, when melanization was inhibited or promoted, the replication of HvAV-3h was inhibited or promoted, respectively. In conclusion, infection with HvAV-3h can markedly induce melanization in the middle stage of infection, and melanization is helpful for HvAV-3h viral replication.
Collapse
Affiliation(s)
- Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Hui Song
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Min Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shu Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
He L, Ou-Yang YY, Li N, Chen Y, Liu SQ, Huang GH. Regulation of Chitinase in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) During Infection by Heliothis virescens ascovirus 3h (HvAV-3h). Front Physiol 2020; 11:166. [PMID: 32210833 PMCID: PMC7077506 DOI: 10.3389/fphys.2020.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Insect chitinases play essential roles in the molting and metamorphosis of insects. The virus Heliothis virescens ascovirus 3h (HvAV-3h) can prolong the total duration of the larval stage in its host larvae. In this study, the molecular character and function of chitinase and chitin-binding domain (CBD) were analyzed in larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In detecting the chitinase activity of mock-infected and HvAV-3h-infected larval whole bodies and four different larval tissues, the results showed that larval chitinase activity was significantly decreased at 48 h post infection (hpi) and that the chitinase activity of HvAV-3h-infected larval fat body and cuticle was notably decreased at 144 and 168 hpi. The transcription level of S. exigua chitinase 7 (SeCHIT7) was down-regulated at the 6, 9, 12, 48, 72, and 96 hpi sample times, the S. exigua chitinase 11 (SeCHIT11) was down-regulated at 3-96 hpi, while both S. exigua chitinases (SeCHITs) were up-regulated at 120-168 hpi. Further tissue-specific detection of SeCHIT7 and SeCHIT11 transcription showed that SeCHIT7 was down-regulated at 144 and 168 hpi in the fat body and cuticle. SeCHIT11 was down-regulated at 168 hpi in the fat body, midgut, and cuticle. Additionally, the transcription and expression of S. exigua chitin-binding domain (SeCBD) could not be detected in HvAV-3h-infected larvae. The in vitro analyses of SeCHIT7N, SeCHIT11, and SeCBD showed that SeCHIT7N and SeCHIT11 were typical chitinases. Conversely, no chitinase activity was detected with SeCBD. SeCBD, however, could significantly increase the activity of SeCHIT7N and SeCHIT11. In conclusion, HvAV-3h not only interfered with the transcription and expression of SeCHITs but also affected the normal transcription and expression of SeCBD and, in doing so, influenced the host larval chitinase activity. These results will aid in providing a foundation for further studies on the pathogenesis of HvAV-3h.
Collapse
Affiliation(s)
- Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|