1
|
Liu L, Yu X, Huang Y, Liu C, Xie X, Wu Z, Lin J, Shu B. Exposure to Sublethal Concentrations of Dinotefuran Induces Apoptosis in the Gut of Diaphorina citri Adults via Activating the Mitochondrial Apoptotic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19342-19352. [PMID: 39178008 DOI: 10.1021/acs.jafc.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Diaphorina citri is a serious citrus pest. Dinotefuran is highly insecticidal against D. citri. To analyze the sublethal effects of dinotefuran on D. citri adults, an indoor toxicity test was performed, which revealed that the lethal concentration 50 (LC50) values were 4.23 and 0.50 μg/mL for 24 and 48 h treatments, respectively. RNA-Seq led to the identification of 71 and 231 differentially expressed genes (DEGs) after dinotefuran treatments with LC20 and LC50 doses, respectively. Many of the DEGs are significantly enriched in the apoptosis pathway. Dinotefuran-induced apoptosis in the gut cells was confirmed through independent assays of 4',6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Increased levels of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential were observed. Four caspase genes were identified, and dinotefuran treatments resulted in increased mRNA levels of DcCasp1 and DcCasp3a. These findings shed light on the sublethal effects of dinotefuran on D. citri.
Collapse
Affiliation(s)
- Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xuanyue Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Cuiting Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Xie
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Zhang Q, Zhang C, Zhong H, He Q, Xia ZY, Hu Y, Liao YX, Yi L, Lu ZJ, Yu HZ. A Combinatorial Single-Molecule Real-Time and Illumina Sequencing Analysis of Postembryonic Gene Expression in the Asian Citrus Psyllid Diaphorina citri. INSECTS 2024; 15:391. [PMID: 38921106 PMCID: PMC11203772 DOI: 10.3390/insects15060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Huanglongbing (HLB) is a systemic plant disease caused by 'Candidatus Liberibacter asiaticus (CLas)' and transmitted by Diaphorina citri. D. citri acquires the CLas bacteria in the nymph stage and transmits it in the adult stage, indicating that molting from the nymph to adult stages is crucial for HLB transmission. However, the available D. citri reference genomes are incomplete, and gene function studies have been limited to date. In the current research, PacBio single-molecule real-time (SMRT) and Illumina sequencing were performed to investigate the transcriptome of D. citri nymphs and adults. In total, 10,641 full-length, non-redundant transcripts (FLNRTs), 594 alternative splicing (AS) events, 4522 simple sequence repeats (SSRs), 1086 long-coding RNAs (lncRNAs), 281 transcription factors (TFs), and 4459 APA sites were identified. Furthermore, 3746 differentially expressed genes (DEGs) between nymphs and adults were identified, among which 30 DEGs involved in the Hippo signaling pathway were found. Reverse transcription-quantitative PCR (RT-qPCR) further validated the expression levels of 12 DEGs and showed a positive correlation with transcriptome data. Finally, the spatiotemporal expression pattern of genes involved in the Hippo signaling pathway exhibited high expression in the D. citri testis, ovary, and egg. Silencing of the D. citri transcriptional co-activator (DcYki) gene significantly increased D. citri mortality and decreased the cumulative molting. Our results provide useful information and a reliable data resource for gene function research of D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Zhao-Ying Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu Hu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu-Xin Liao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
3
|
Shu B, Xie X, Dai J, Liu L, Cai X, Wu Z, Lin J. Host plant-induced changes in metabolism and osmotic regulation gene expression in Diaphorina citri adults. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104599. [PMID: 38072187 DOI: 10.1016/j.jinsphys.2023.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a worldwide citrus pest. It transmits the pathogen Candidatus Liberibacter spp. of Huanglongbing (HLB), causing severe economic losses to the citrus industry. Severalgenera of plants in the Rutaceae family are the hosts of D. citri. However, the impact of these hosts on the metabolism and osmotic regulation gene expression of the pest remains unexplored. In this study, the contents of total sugars, sucrose, fructose, and glucose in young shoots, old leaves, and young leaves of 'Shatangju' mandarin and Murraya exotica were analyzed. Metabolomic analysis found that sucrose and trehalose were more abundant in the gut samples of D. citri adults fed on M. exotica when compared to what's in 'Shatangju' mandarin. A total of six aquaporin genes were identified in D. citri through the genome and transcriptome data. Subsequently, the expression patterns of these genes were investigated with respect to their developmental stage and tissue specificity. Additionally, the expression levels of osmotic regulation and trehalose metabolism genes in adults fed on different plants were evaluated. Our results provide useful information on the transfer of sugar between plants and D. citri. Our results preliminary revealed the sugar metabolism regulation mechanism in D. citri adults.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinyi Xie
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
4
|
Gao H, Zang Y, Zhang Y, Zhao H, Ma W, Chen X, Wang J, Zhao D, Wang X, Huang Y, Zhang F. Transcriptome analysis revealed that short-term stress in Blattella germanica to β-cypermethrin can reshape the phenotype of resistance adaptation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105703. [PMID: 38072557 DOI: 10.1016/j.pestbp.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
Previous studies on insect resistance have primarily focused on resistance monitoring and the molecular mechanisms involved, while overlooking the process of phenotype formation induced by insecticide stress. In this study, we compared the expression profiles of a beta-cypermethrin (β-CYP) resistant strain (R) and a susceptible strain (S) of Blattella germanica after β-CYP induction using transcriptome sequencing. In the short-term stress experiment, we identified a total of 792 and 622 differentially expressed genes (DEGs) in the S and R strains. Additionally, 893 DEGs were identified in the long-term adaptation experiment. To validate the RNA-Seq data, we performed qRT-PCR on eleven selected DEGs, and the results were consistent with the transcriptome sequencing data. These DEGs exhibited down-regulation in the short-term stress group and up-regulation in the long-term adaptation group. Among the validated DEGs, CUO8 and Cyp4g19 were identified and subjected to knockdown using RNA interference. Subsequent insecticide bioassays revealed that the mortality rate of cockroaches treated with β-CYP increased by 69.3% and 66.7% after silencing the CUO8 and Cyp4g19 genes (P<0.05). Furthermore, the silencing of CUO8 resulted in a significant thinning of the cuticle by 59.3% and 53.4% (P<0.05), as observed through transmission electron microscopy and eosin staining, in the S and R strains, respectively. Overall, our findings demonstrate that the phenotypic plasticity in response to short-term stress can reshape the adaptive mechanisms of genetic variation during prolonged exposure to insecticides. And the identified resistance-related genes, CUO8 and Cyp4g19, could serve as potential targets for controlling these pest populations.
Collapse
Affiliation(s)
- Huiyuan Gao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Yanan Zang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Yuting Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Haizheng Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Wenxiao Ma
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Xingyu Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Jingjing Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Dongqin Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250013, China
| | - Yanhong Huang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
5
|
Xia T, Liu Y, Lu Z, Yu H. Natural Coumarin Shows Toxicity to Spodoptera litura by Inhibiting Detoxification Enzymes and Glycometabolism. Int J Mol Sci 2023; 24:13177. [PMID: 37685985 PMCID: PMC10488291 DOI: 10.3390/ijms241713177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Coumarin and its derivatives are plant-derived compounds that exhibit potent insecticidal properties. In this study, we found that natural coumarin significantly inhibited the growth and development of Spodoptera litura larvae through toxicological assay. By transcriptomic sequencing, 80 and 45 differentially expressed genes (DEGs) related to detoxification were identified from 0 to 24 h and 24 to 48 h in S. litura after coumarin treatment, respectively. Enzyme activity analysis showed that CYP450 and acetylcholinesterase (AChE) activities significantly decreased at 48 h after coumarin treatment, while glutathione S-transferases (GST) activity increased at 24 h. Silencing of SlCYP324A16 gene by RNA interference significantly increased S. litura larval mortality and decreased individual weight after treatment with coumarin. Additionally, the expression levels of DEGs involved in glycolysis and tricarboxylic acid (TCA) cycle were inhibited at 24 h after coumarin treatment, while their expression levels were upregulated at 48 h. Furthermore, metabonomics analysis identified 391 differential metabolites involved in purine metabolism, amino acid metabolism, and TCA cycle from 0 to 24 h after treated with coumarin and 352 differential metabolites associated with ATP-binding cassette (ABC) transporters and amino acid metabolism. These results provide an in-depth understanding of the toxicological mechanism of coumarin on S. litura.
Collapse
Affiliation(s)
- Tao Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
| | - Yan Liu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341003, China
| | - Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341003, China
| |
Collapse
|
6
|
Pan X, Ding JH, Zhao SQ, Shi HC, Miao WL, Wu FA, Sheng S, Zhou WH. Identification and functional study of detoxification-related genes in response to tolfenpyrad stress in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105503. [PMID: 37532323 DOI: 10.1016/j.pestbp.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Collapse
Affiliation(s)
- Xin Pan
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Jian-Hao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shuai-Qi Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Hui-Cong Shi
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Wang-Long Miao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| | - Wei-Hong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| |
Collapse
|
7
|
Zhang C, Wan B, Jin MR, Wang X, Wei YJ, Zhong L, Xia B. Inhibition of ecdysone receptor (DcEcR) and ultraspiracle (DcUSP) expression in Diaphorina citri increased susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105518. [PMID: 37532332 DOI: 10.1016/j.pestbp.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Diaphorina citri Kuwayama is of great concern because of its ability to transmit devastating citrus greening illness (Huanglongbing). One strategy for controlling HLB may involve limiting the spread of D. citri. Insecticides using dsRNA target genes may be a useful option to control D. citri. The ecdysone receptor (EcR) and ultraspiracle (USP) are crucial for the growth and reproduction of insects. This study identified the genes for D. citri ecdysone receptor (DcEcR) and ultraspiracle (DcUSP). According to the qPCR data, DcUSP peaked at the 5th-instar nymph stage, while DcEcR peaked at the adult stage. Females expressed DcEcR and DcUSP at much higher levels than males. RNAi was used to examine DcEcR and DcUSP function. The findings demonstrated that inhibition of DcEcR and DcUSP delayed nymph development and decreased survival and eclosion rates. dsEcR caused adults to develop deformed wings, and dsUSP caused nymphs to wither and die. Female adult ovaries developed slowly, and the females laid fewer eggs. Additionally, DcEcR and DcUSP were inhibited, increasing D. citri susceptibility to pesticides. These findings suggest that DcEcR and DcUSP are critical for D. citri development, growth, and reproduction and may serve as potential targets for D. citri management.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xi Wang
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Yu-Jing Wei
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ling Zhong
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
8
|
Shangguan C, Kuang Y, Gao L, Zhu B, Chen XD, Yu X. Antennae-enriched expression of candidate odorant degrading enzyme genes in the turnip aphid, Lipaphis erysimi. Front Physiol 2023; 14:1228570. [PMID: 37476684 PMCID: PMC10354451 DOI: 10.3389/fphys.2023.1228570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Aphids heavily rely on their olfactory system for foraging behavior. Odorant-degrading enzymes (ODEs) are essential in preserving the olfactory acuity of aphids by removing redundant odorants in the antennae. Certain enzymes within this group stand out as being enriched and/or biased expressed in the antennae, such as carboxylesterases (CXEs), cytochrome P450 (CYPs), glutathione S-transferases (GSTs), and UDP-glycosyltransferases (UGTs). Here, we performed a comparative transcriptome analysis of antennae and body tissue to isolate the antennal ODE genes of turnip aphid Lipaphis erysimi. A dataset of one CXE, seven CYPs, two GSTs, and five UGTs enriched in the antennae was identified and subjected to sequence analysis. Furthermore, qRT-PCR analyses showed that 13 ODE genes (LeCXE6, LeCYP4c1, LeCYP6a2, LeCYP6a13, LeCYP6a14.2, LeCYP6k1, LeCYP18a1, LeGST1, LeUGT1-7, LeUGT2B7, LeUGT2B13, LeUGT2C1.1, and LeUGT2C1.2) were specifically or significantly elevated in antennal tissues. Among these antennae-enriched ODEs, LeCYP4c1, LeCYP6a2, LeCYP6a13, LeCYP6a14.2, LeCYP18a1, LeUGT2B7, and LeUGT2B13 were found to exhibit significantly higher expression levels in alate aphids compared to apterous and nymph aphids, suggesting their putative role in detecting new host plant location. The results presented in this study highlight the identification and expression of ODE genes in L. erysimi, paving the path to investigate their functional role in odorant degradation during the olfactory processes.
Collapse
Affiliation(s)
- Chaozhi Shangguan
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yinhui Kuang
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liwei Gao
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Bo Zhu
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Xiudao Yu
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
9
|
Zhang C, Wan B, Jin MR, Wang J, Xin TR, Zou ZW, Xia B. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105361. [PMID: 36963933 DOI: 10.1016/j.pestbp.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tian-Rong Xin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhi-Wen Zou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
10
|
Cruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. INSECTS 2023; 14:194. [PMID: 36835763 PMCID: PMC9958613 DOI: 10.3390/insects14020194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insect behaviors through the olfaction system. CCEs confer insecticide resistance through the mechanisms of qualitative or quantitative changes of CCE-mediated enhanced metabolism or target-site insensitivity, and may contribute to the host plant adaptation. CCEs represent the first odorant-degrading enzymes (ODEs) discovered to degrade insect pheromones and plant odors and remain the most promising ODE candidates. Here, we summarize insect CCE classification, currently characterized insect CCE protein structure characteristics, and the dynamic roles of insect CCEs in chemical adaptation.
Collapse
Affiliation(s)
- Casey Cruse
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Timothy Walter Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
11
|
Chen YJ, Zhao J, Jiang JX, Wan NF. Transcriptome analysis revealed detoxification gene expression changes in Tetranychus cinnabarinus challenged with ethyl oleate. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:61-84. [PMID: 36656389 DOI: 10.1007/s10493-022-00772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Natural acaricides are potential biorational mite control alternatives to conventional chemical acaricides. However, little is known about the molecular mechanism of defense response to natural acaricides in mites. We previously reported significant acaricidal properties of ethyl oleate (EO) against Tetranychus cinnabarinus (here referred to as a sibling species of two-spotted spider mite, Tetranychus urticae), a highly polyphagous pest devastating crops in fields and greenhouses worldwide. In this study, we explored the molecular responses of T. cinnabarinus exposed to EO using RNA-Seq and differentially expressed gene (DEG) analysis. A total of 131, 185, and 154 DEGs were identified in T. cinnabarinus after 1, 6, and 24 h of EO treatment. In addition, 36 putative detoxification-related DEGs, including 10 cytochrome P450s (P450s), three glutathione S-transferases (GSTs), nine UDP-glycosyltransferases (UGTs), eight esterases (ESTs), and six ATP-binding cassette transporters (ABC transporters), were identified. Interestingly, the upregulation of these detoxification-related genes might be the main defense response of T. cinnabarinus exposed to EO. A quantitative real-time PCR analysis indicated that the expression profiles of 19 random DEGs were consistent with the RNA-Seq results. These findings serve as valuable information for a better understanding of the acaricide-mite interaction and molecular mechanisms involved in the defense response of T. cinnabarinus against EO.
Collapse
Affiliation(s)
- Yi-Juan Chen
- Eco-environmental Protection Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, 201403, Shanghai, China
| | - Jie Zhao
- Shanghai Pudong New District Agro-Technology Extension Center, 66 Changxin East Road, 201201, Shanghai, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, 201403, Shanghai, China.
| | - Nian-Feng Wan
- Eco-environmental Protection Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, 201403, Shanghai, China.
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
12
|
Li J, He P, He P, Li Y, Wu Y, Lu Z, Li X, Yang Y, Wang Y, Guo J, Munir S, He Y. Potential of citrus endophyte Bacillus subtilis L1-21 in the control of Candidatus Liberibacter asiaticus in Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2022; 78:5164-5171. [PMID: 36114796 DOI: 10.1002/ps.7134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Asian citrus psyllid (ACP), also known as Diaphorina citri, is the natural vector of Candidatus Liberibacter asiaticus (CLas), which is responsible for Huanglongbing (HLB), a devastating citrus disease. Previously, the pathogen was successfully excluded from diseased citrus plants by using the indigenous endophyte Bacillus subtilis L1-21. However, the pathogen elimination and colonization potential of B. subtilis L1-21 in the carrier vector ACP, as well as the recruitment of native microbial communities of psyllid in the presence of endophytes, are still unknown. RESULTS Initially, we suggested that endophyte L1-21 reduced the CLas copies in ACP from 6.58 × 106 to 5.04 × 104 per insect after 48 h, however, the pathogen copies remained stable in the negative control. The endophyte was stable for 48 h after application. Among the bacterial genera those highlighted in ACP were Candidatus Liberibacter, Pseudomonas, Candidatus Profftella, Methylobacterium-Methylorubrum, Pantoea, Curtobacterium, Wolbachia, Actinomycetospora, and Bacillus. Interestingly, B. subtilis L1-21 easily colonizes the midgut of ACP but cannot be detected in eggs. When ACP with endophyte L1-21 was allowed to feed on new citrus leaves, the highest colonization was observed. We also found that psyllids carrying endophyte L1-21 after feeding on citrus leaves reduced the CLas copies in leaves on the 0, 3rd and 5th day from 8.18 × 10,4 2.6 × 10,3 and 0 pathogen copies/g fresh midvein, respectively. CONCLUSIONS We propose that B. subtilis L1-21 is a native endophyte in citrus and psyllid, which efficiently reduces the CLas pathogen in both citrus and psyllids, provides a more protective effect by increasing the number of cultivable endophytes, and successfully colonizes the midgut of ACP. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Jun Guo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Kuang Y, Xiong Y, Chen XD, Yu X. Antennae-abundant expression of candidate cytochrome P450 genes associated with odorant degradation in the asian citrus psyllid, Diaphorina citri. Front Physiol 2022; 13:1004192. [PMID: 36176776 PMCID: PMC9513247 DOI: 10.3389/fphys.2022.1004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is a notorious pest that is an efficient vector for Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus huanglongbing (HLB). The olfactory system of insects is crucial for foraging and mating behavior. Antennae-abundant odorant degrading enzymes (ODEs), including cytochrome P450 (CYPs), are important in degrading redundant odorant molecules to recover the insect olfactory. In this study, to isolate the antennal CYP genes of D. citri, we generated four transcriptomes from female/male antennae and body through deep sequencing of RNA libraries. Seven DcCYP genes preferentially expressed in antennae were first identified by comparing the antennal and body transcriptomes. Phylogenetic analysis grouped four DcCYPs (DcCYP6a13, DcCYP6j1, DcCYP6k1, and DcCYP6a2) into the CYP3 class, whereas DcCYP4d2, DcCYP4c62, and DcCYP4d8 were clustered in the CYP4 clade. qRT-PCR analyses across developmental stages and tissues showed they were antennae-abundant in both genders and constantly expressed from the first instar nymph to the adult. The results presented here highlight the isolation and expression of CYP genes in D. citri antennae, providing valuable insights into their putative role in odorant degradation.
Collapse
Affiliation(s)
- Yinhui Kuang
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yu Xiong
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Xiudao Yu
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Yuan H, Gao B, Wu C, Zhang L, Li H, Xiao Y, Wu K. Genome of the hoverfly Eupeodes corollae provides insights into the evolution of predation and pollination in insects. BMC Biol 2022; 20:157. [PMID: 35794591 PMCID: PMC9261035 DOI: 10.1186/s12915-022-01356-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hoverflies (Diptera: Syrphidae) including Eupeodes corollae are important insects worldwide that provide dual ecosystem services including pest control and pollination. The larvae are dominant predators of aphids and can be used as biological control agents, and the adults are efficient pollinators. The different feeding habits of larvae and adults make hoverflies a valuable genetic resource for understanding the mechanisms underlying the evolution and adaptation to predation and pollination in insects. Results Here, we present a 595-Mb high-quality reference genome of the hoverfly E. corollae, which is typical of an aphid predator and a pollinator. Comparative genomic analyses of E. corollae and Coccinellidae (ladybugs, aphid predators) shed light on takeout genes (3), which are involved in circadian rhythms and feeding behavior and might regulate the feeding behavior of E. corollae in a circadian manner. Genes for sugar symporter (12) and lipid transport (7) related to energy production in E. corollae had homologs in pollinator honeybees and were absent in predatory ladybugs. A number of classical cytochrome P450 detoxification genes, mainly CYP6 subfamily members, were greatly expanded in E. corollae. Notably, comparative genomic analyses of E. corollae and other aphidophagous hoverflies highlighted three homologous trypsins (Ecor12299, Ecor12301, Ecor2966). Transcriptome analysis showed that nine trypsins, including Ecor12299, Ecor12301, and Ecor2966, are strongly expressed at the larval stage, and 10 opsin genes, which are involved in visual perception, are significantly upregulated at the adult stage of E. corollae. Conclusions The high-quality genome assembly provided new insights into the genetic basis of predation and pollination by E. corollae and is a valuable resource for advancing studies on genetic adaptations and evolution of hoverflies and other natural enemies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01356-6.
Collapse
Affiliation(s)
- He Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bojia Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Mann M, Saha S, Cicero JM, Pitino M, Moulton K, Hunter WB, Cano LM, Mueller LA, Heck M. Lessons learned about the biology and genomics of Diaphorina citri infection with "Candidatus Liberibacter asiaticus" by integrating new and archived organ-specific transcriptome data. Gigascience 2022; 11:giac035. [PMID: 35482489 PMCID: PMC9049105 DOI: 10.1093/gigascience/giac035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Huanglongbing, a devastating disease of citrus, is caused by the obligate, intracellular bacterium "Candidatus Liberibacter asiaticus" (CLas). CLas is transmitted by Diaphorina citri, the Asian citrus psyllid. Development of transmission-blocking strategies to manage huanglongbing relies on knowledge of CLas and D. citri interactions at the molecular level. Prior transcriptome analyses of D. citri point to changes in psyllid biology due to CLas infection but have been hampered by incomplete versions of the D. citri genome, proper host plant controls, and/or a lack of a uniform data analysis approach. In this work, we present lessons learned from a quantitative transcriptome analysis of excised heads, salivary glands, midguts, and bacteriomes from CLas-positive and CLas-negative D. citri using the chromosomal length D. citri genome assembly. RESULTS Each organ had a unique transcriptome profile and response to CLas infection. Though most psyllids were infected with the bacterium, CLas-derived transcripts were not detected in all organs. By analyzing the midgut dataset using both the Diaci_v1.1 and v3.0 D. citri genomes, we showed that improved genome assembly led to significant and quantifiable differences in RNA-sequencing data interpretation. CONCLUSIONS Our results support the hypothesis that future transcriptome studies on circulative, vector-borne pathogens should be conducted at the tissue-specific level using complete, chromosomal-length genome assemblies for the most accurate understanding of pathogen-induced changes in vector gene expression.
Collapse
Affiliation(s)
- Marina Mann
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Joseph M Cicero
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, FL 34945, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, FL 34945, USA
| | - Liliana M Cano
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| | | | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA Agricultural Research Service, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Yu HZ, Xie YX, Wang J, Wang Y, Du YM, Wang HG, Zhong BL, Zhu B, Yu XD, Lu ZJ. Integrated transcriptome sequencing and RNA interference reveals molecular changes in Diaphorina citri after exposure to validamycin. INSECT SCIENCE 2021; 28:1690-1707. [PMID: 33118290 DOI: 10.1111/1744-7917.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Validamycin has been widely used as a specific competitive inhibitor of trehalase. In our previous research, validamycin significantly inhibited trehalase activity and chitin synthesis in Diaphorina citri, resulting in abnormal phenotypes. However, the mechanism of validamycin's action on D. citri remains unclear. Here, using a comparative transcriptome analysis, 464 differentially expressed genes (DEGs) in D. citri were identified after validamycin treatment. A Gene Ontology enrichment analysis revealed that these DEGs were mainly involved in "small molecule process", "structural molecule activity" and "transition metal ion binding". DEGs involved in chitin metabolism, cuticle synthesis and insecticide detoxification were validated by reverse transcription quantitative polymerase chain reaction. The RNA interference of D. citri chitinase-like protein ENO3 and D. citri cuticle protein 7 genes significantly affected D. citri molting. Moreover, the recombinant chitinase-like protein ENO3 exhibited a chitin-binding property, and an antimicrobial activity against Bacillus subtilis. This study provides a first insight into the molecular changes in D. citri after exposure to validamycin and identifies two effective RNA interference targets for D. citri control.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ying Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - He-Gui Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Xiu-Dao Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| |
Collapse
|
17
|
Xing X, Yan M, Pang H, Wu F, Wang J, Sheng S. Cytochrome P450s Are Essential for Insecticide Tolerance in the Endoparasitoid Wasp Meteorus pulchricornis (Hymenoptera: Braconidae). INSECTS 2021; 12:insects12070651. [PMID: 34357311 PMCID: PMC8306486 DOI: 10.3390/insects12070651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
With the widespread application of insecticides, parasitoid wasps may also be under risk when exposed to insecticides directly at their free-living stages. The endoparasitoid wasp Meteorus pulchricornis is the predominant natural enemy of many lepidopteran pests, such as Spodoptera litura and Helicoverpa armigera. The cytochrome P450 monooxygenases constitute a ubiquitous and complex superfamily of hydrophobic, haem-containing enzymes. P450s are involved in the detoxification of many xenobiotics. However, their exact roles in the tolerance mechanism in parasitoids toward insecticides has received less attention. Here, 28 P450 genes in M. pulchricornis were identified from a previously constructed transcriptome dataset. These P450 genes belonged to CYP2, -3, and -4, and mitochondrial clans. Subsequently, eight candidate MpulCYPs were selected from four CYP clans to validate their expression patterns under phoxim, cypermethrin, and chlorfenapyr exposure by qRT-PCR. The results showed that all three insecticides had significant effects on the expression of MpulCYPs. To further study the function of P450s, CYP369B3 was silenced, and its expression levels of CYP369B3 were significantly decreased. Survival analysis indicated that after dsRNA injection, the mortality rate of wasps was significantly increased when M. pulchricornis females were exposed to insecticides compared to control groups. Our findings provide a theoretical base for elucidating the mechanism of insecticide tolerance and promote functional research on P450 genes in parasitoid wasps.
Collapse
Affiliation(s)
- Xiaorong Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
| | - Mengwen Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
| | - Huilin Pang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
| | - Fu’an Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (X.X.); (M.Y.); (H.P.); (F.W.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence:
| |
Collapse
|
18
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|