1
|
Chen C, Teng G, Shen W, Lu Y, Jin Y, Yuan X, Chen K, Yuan Y, Wu Z, Zhang J. Green Carbon Dots/CaCO 3/Abamectin Colloidal Pesticide Formulation for Safer and More Effective Pest Management. ACS NANO 2025; 19:1007-1025. [PMID: 39707989 DOI: 10.1021/acsnano.4c12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
An ideal green leaf-deposited pesticide formulation should offer advantages such as good water dispersibility, strong foliar affinity, sustained or controlled release of active ingredients, photostability and rain-fastness, minimal nontarget toxicity, use of nontoxic organic solvents, and degradable adjuvants. In line with this objective, we present green preparation of a colloidal pesticide formulation using optimized lysine-derived carbon dots (LysCDs)-modified CaCO3 (LysCDs/CaCO3) particles as the carrier and abamectin (Abm) as the active ingredient. The loading capacity of abamectin in this colloidal pesticide (LysCDs/CaCO3/Abm) is 1.7 to 2.1 times higher than that of its counterpart (CaCO3/Abm) prepared without LysCDs, which is attributed to the increased specific surface area and pore volume of LysCDs/CaCO3 particles. Due to the acid-induced degradation of CaCO3, the release of abamectin for LysCDs/CaCO3/Abm is accelerated under weakly acidic conditions, which is accompanied by the release of Ca2+ ions and the fluorescence changes of LysCDs. The incorporation of LysCDs enhances the photostability and foliar adhesiveness of this colloidal pesticide, resulting in the highest degree of foliar retention when exposed to ultraviolet (UV) light or rainfall, compared to free-form abamectin and CaCO3/Abm. This results in the best performance of pest control on Plutella xylostella for LysCDs/CaCO3/Abm in both indoor and outdoor tests. Nontarget biocompatibility evaluations show that LysCDs/CaCO3/Abm exhibits lower acute toxicity to zebrafish and earthworms than free-form abamectin. In addition, this colloidal pesticide is favored by the minimal residue of the adjuvant material after abamectin release, which is converted into harmless Ca2+ ions, CO2, and LysCDs. Therefore, this work designs a safer and more effective colloidal pesticide formulation to deliver abamectin with minimal adjuvant residue, realizing its trajectory as basically "circular and green".
Collapse
Affiliation(s)
- Chuang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weicheng Shen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yijun Lu
- Key Laboratory of Medical Physics and Technology of Anhui Province, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yuwei Jin
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Kang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| |
Collapse
|
2
|
Guo DX, Song L, Yang JH, He XY, Liu P, Wang PY. β-Cyclodextrin-optimized supramolecular nanovesicles enhance the droplet/foliage interface interactions and inhibition of succinate dehydrogenase (SDH) for efficient treatment of fungal diseases. J Nanobiotechnology 2024; 22:581. [PMID: 39304921 PMCID: PMC11414324 DOI: 10.1186/s12951-024-02849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Plant fungal diseases present a major challenge to global agricultural production. Despite extensive efforts to develop fungicides, particularly succinate dehydrogenase inhibitors (SDHIs), their effectiveness is often limited by poor retention of fungicide droplets on hydrophobic leaves. The off-target losses and unintended release cause fungal resistance and severe environmental pollution. RESULTS To update the structure of existing SDHIs and synchronously realize the efficient utilization, we have employed a sophisticated supramolecular strategy to optimize a structurally novel SDH inhibitor (AoH25), creating an innovative supramolecular SDH fungicide (AoH25@β-CD), driven by the host-guest recognition principle between AoH25 and β-cyclodextrin (β-CD). Intriguingly, AoH25@β-CD self-assembles into biocompatible supramolecular nanovesicles, which reinforce the droplet/foliage (liquid-solid) interface interaction and the effective wetting and retention on leaf surfaces, setting the foundation for enhancing fungicide utilization. Mechanistic studies revealed that AoH25@β-CD exhibited significantly higher inhibition of SDH (IC50 = 1.56 µM) compared to fluopyram (IC50 = 244.41 µM) and AoH25 alone (IC50 = 2.29 µM). Additionally, AoH25@β-CD increased the permeability of cell membranes in Botryosphaeria dothidea, facilitating better penetration of active ingredients into pathogenic cells. Further experimental outcomes confirmed that AoH25@β-CD was 88.5% effective against kiwifruit soft rot at a low-dose of 100 µg mL-1, outperforming commercial fungicides such as fluopyram (52.4%) and azoxystrobin (65.4%). Moreover, AoH25@β-CD showed broad-spectrum bioactivity against oilseed rape sclerotinia, achieving an efficacy of 87.2%, outstripping those of fluopyram (48.7%) and azoxystrobin (76.7%). CONCLUSION This innovative approach addresses key challenges related to fungicide deposition and resistance, improving the bioavailability of agricultural chemicals. The findings highlight AoH25@β-CD as a novel supramolecular SDH inhibitor, demonstrating its potential as an efficient and sustainable solution for plant disease management.
Collapse
Affiliation(s)
- Deng-Xuan Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Li Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jing-Han Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xin-Yu He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pei-Yi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Ding X, Gao F, Cui B, Du Q, Zeng Z, Zhao X, Sun C, Wang Y, Cui H. The key factors of solid nanodispersion for promoting the bioactivity of abamectin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105897. [PMID: 38685223 DOI: 10.1016/j.pestbp.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
4
|
Dong H, Chen C, Zhao J, Ji Y, Yang W. Photoinduced Photocatalyst-Free Cascade Cyclization of Alkynes with Sodium Sulfinates for the Synthesis of Benzothiophenes and Thioflavones. Molecules 2023; 28:molecules28114436. [PMID: 37298913 DOI: 10.3390/molecules28114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.
Collapse
Affiliation(s)
- Hongqiang Dong
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunli Chen
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Jinlei Zhao
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225127, China
| | - Yigang Ji
- Jiangsu Key Laboratory of Biofuctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenchao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Niu XJ, Wang LJ, Meng H, Wang HF, Xu BH, Wang C. Role of c-Jun NH 2 -terminal kinase-mediated mitogen-activated protein kinase pathway in response to pesticides in Apis cerana cerana. INSECT SCIENCE 2023; 30:47-64. [PMID: 35548935 DOI: 10.1111/1744-7917.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway plays an important role in regulating stress responses. The function of the c-Jun NH2 -terminal kinase (JNK), a component of the MAPK cascade pathway, in Apis cerana cerana (Acc) remains unclear. Here, JNK was isolated and identified from Acc. Bioinformatics analyses revealed there is a typical serine/threonine protein kinase catalytic domain in the AccJNK protein. An expression profile analysis showed that AccJNK was significantly induced by pesticide treatments. To further explore the functional mechanisms of AccJNK, a yeast 2-hybrid screen was performed, activator protein-1 (AP-1) was screened as the interaction partner of AccJNK, and the interaction relationship was further verified by pull-down assay. Quantitative real-time polymerase chain reaction showed the expression pattern of AccAP-1 was similar to that of AccJNK. After a knockdown of AccJNK or AccAP-1 by RNA interference, the survival rate of Acc after pesticide treatments increased. Additionally, the expression levels of antioxidant-related genes and the activities of antioxidant enzymes increased, suggesting that the knockdown of AccJNK or AccAP-1 increased the antioxidant capacity of bees. Our study revealed that the JNK-mediated MAPK pathway responds to pesticide stress by altering the antioxidant capacity of Acc.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hui Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
6
|
Singh M, Rehman A, Hassan N, Anfey Faheem A, Das A, Rahman M, Ansari MJ, Sharma N, Dudeja M, Aqil M, Mirza MA, Iqbal Z. Exploration of a W/O Nanoemulsion for Antibiofilm Activity against Cariogenic Enterococcus faecalis. ACS OMEGA 2023; 8:2871-2879. [PMID: 36713714 PMCID: PMC9878626 DOI: 10.1021/acsomega.2c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
A ciprofloxacin-loaded water-in-oil nanoemulsion (CPX-NE) was prepared and evaluated for the antimicrobial effect against oral biofilms produced by Enterococcus faecalis. CPX-NE was prepared by ultrasonication using functional excipients oleic acid (oil phase), Span 80 (surfactant), and Transcutol P (cosurfactant). Rheological parameters (viscosity = 20 ± 1.24 cp) confirmed optimum values for CPX-NE, a pH of 6.5 ± 0.23 suggested the simulation of CPX-NE with the pH of the mouth cavity, refractive index (1.46 ± 0.22), and % transmittance (92.34 ± 0.02) indicated the isotropic nature of the NE. The droplet size (72.19 ± 1.68 nm), polydispersity index (0.142 ± 0.02), and ζ potential (-28 mV) demonstrated a narrow size distribution and electrostatically stabilized NE. The morphology of the optimized formulation showed uniform spherical nanodroplets, as seen in fluorescence microscopy. In vitro drug release showed an initial burst effect followed by sustained release for 48 h, following Fick's diffusion. The minimum biofilm inhibitory and eradication concentration (MBIC/MBEC) was determined to compare CPX-NE with ciprofloxacin plain drug solution (CPX-PS) for their efficacy. CPX-NE demonstrated a significant inhibitory and eradication effect compared to CPX-PS. It was concluded that the developed CPX-NE has effective antibiofilm activity against E. faecalis and may be useful in the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Manvi Singh
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
- Department
of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram122505, India
| | - Abdul Rehman
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| | - Nazia Hassan
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| | - Abdul Anfey Faheem
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| | - Ayan Das
- Department
of Microbiology, Hamdard Institute of Medical Science and Research
(HIMSR), Jamia Hamdard, New Delhi110062, India
| | - MohammadAkhlaquer Rahman
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21944, Kingdom of Saudi Arabia
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj16273, Saudia Arabia
| | - Nilima Sharma
- Department
of Dentistry, HIMSR & HakimAbdul Hamid (HAH) Centenary Hospital, Jamia Hamdard, New Delhi110062, India
| | - Mridu Dudeja
- Department
of Microbiology, Hamdard Institute of Medical Science and Research
(HIMSR), Jamia Hamdard, New Delhi110062, India
| | - Mohd Aqil
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research
(SPER), Jamia Hamdard, New Delhi110062, India
| |
Collapse
|
7
|
Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Foong SY, Chan YH, Loy ACM, How BS, Tamothran AM, Yip AJK, Liew RK, Peng W, Alstrup AK, Lam SS, Sonne C. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. ENVIRONMENTAL RESEARCH 2022; 214:113751. [PMID: 35753369 DOI: 10.1016/j.envres.2022.113751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | | | - Andrew Jun Kit Yip
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- NV Western PLT, 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Aage Ko Alstrup
- Aarhus University Hospital, Department of Nuclear Medicine and PET, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
9
|
Preparation of fenpropathrin nanoemulsions for eco-friendly management of Helicoverpa armigera: improved insecticidal activity and biocompatibility. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li ZN, Zhang YX, Zhang ZA, Pan LH, Li P, Xu Y, Sheng S, Wu FA, Wang J. Microfluidic preparation of a novel phoxim nanoemulsion pesticide against Spodoptera litura. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59653-59665. [PMID: 35394625 DOI: 10.1007/s11356-022-20001-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
With continuous development of pesticide dosage forms, emulsifiable concentrates using large amounts of organic solvents are gradually obsoleted. Nanoemulsions with high water content have been developed and the preparation processes also evolved, but these processes still exist some problems, such as poor controllability and high energy consumption. Microfluidic is a controllable nanoemulsion preparation system which mainly applied to pharmaceutical synthesis. In this study, the pesticide phoxim nanoemulsion was prepared by microfluidic technology. The optimized formulation of phoxim nanoemulsion was composed of Tween 80 and pesticide emulsifier 500 as surfactant, hexyl acetate as oil, and n-propanol as co-surfactant. Moreover, when the flow rates of water and oil in the microfluidic system were adjusted to 5 μL/min and 20 μL/min, phoxim nanoemulsion was obtained with a cloud point/boiling point of 109 °C, a particle size of 21.5 ± 0.8 nm and a potential value of - 18.7 ± 0.6 mV. Furthermore, the nanoemulsion had a rapid release effect in vitro which could be fitted by the Ritger-Peppas model. The feeding toxicity of the phoxim nanoemulsion was higher than that of commercial formulation while the contact killing effect was higher than that of the active ingredient. Therefore, pesticide dosage was reduced and the insecticidal effect was enhanced by using phoxim nanoemulsions. These results also confirm the potential of microfluidics as a green process to produce pesticide nanoemulsions.
Collapse
Affiliation(s)
- Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Yu-Xuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Zhi-Ang Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Lian-Han Pan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Ping Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Yan Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212000, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
11
|
Daniels GC, Hinnant KM, Brown LC, Weise NK, Aukerman MC, Giordano BC. Copolymer Reversible Addition-Fragmentation Chain Transfer Synthesis of Polyethylene Glycol (PEG) Functionalized with Hydrophobic Acrylates: A Study of Surface and Foam Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4547-4554. [PMID: 35384673 DOI: 10.1021/acs.langmuir.1c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of amphiphilic statistical copolymers involving poly(ethylene glycol) monomethacrylate (PEGMA, -OH terminated, average Mn 200 molecular weight) and various hydrophobic acrylates were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The gradient copolymers were characterized by gel-permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR), and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). Solution properties of the copolymers were investigated utilizing surface tension measurement, dynamic light-scattering (DLS), as well as foam analysis using a dynamic foam analyzer (DFA). The PEG-functionalized copolymers showed a systematic trend depending on the hydrophobic moiety in properties including surface tension, critical micelle concentration (CMC), foam lifetime, and liquid drainage from the foam. Copolymers with alkyl-acrylates exhibited the best foam lifetime, demonstrating that the choice of hydrophobic moiety is crucial for foam stability. The PEG-functionalized materials described are considered promising additives for foam-stability purposes.
Collapse
Affiliation(s)
- Grant C Daniels
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Katherine M Hinnant
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Loren C Brown
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
- ASEE Post-Doctoral Fellow, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Nickolaus K Weise
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Mark C Aukerman
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Braden C Giordano
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
12
|
Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the para-position of dearomatized aryl rings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and efficient strategy for the oxidative spirocyclization of biaryl ynones has been developed, where nonsubstituted groups were on the para-position of the dearomatized aryl rings.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Beibei Chen
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P. R. China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
13
|
Murugan K, Abd-Elsalam KA. Sustainable nanoemulsions for agri-food applications: Today and future trends. BIO-BASED NANOEMULSIONS FOR AGRI-FOOD APPLICATIONS 2022:1-11. [DOI: 10.1016/b978-0-323-89846-1.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Li JN, Li ZJ, Shen LY, Li P, Zhang Y, Yang WC. Selective polychloromethylation and halogenation of alkynes with polyhaloalkanes. Org Biomol Chem 2022; 20:6659-6666. [DOI: 10.1039/d2ob01053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which applying polyhaloalkanes as the precursor of polyhalomethyl and halogen radical. Across this...
Collapse
|
15
|
Xia D, Shen LY, Zhang Y, Yang WC. Radical spirocyclization of biaryl ynones for the construction of NO 2-containing spiro[5.5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An efficient 6-exo-trig radical cascade reaction of biaryl ynones with NaNO2 was developed to afford nitro-functionalized spiro[5.5]trienones with yields of up to 88%.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China
| | - Liu-Yu Shen
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
16
|
Shi Y, Xiao T, Xia D, Yang W. SCF 3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Chen Z, Wang X, Shi L, Liu Q, Gao Y, Chen W, Yang J, Yuan X, Feng J. Fabrication and Characterization of Prochloraz Nanoemulsion against Penicillium citrinum for the Postharvest Storage of Navel Oranges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13757-13766. [PMID: 34748347 DOI: 10.1021/acs.langmuir.1c02528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoemulsions have become extremely popular water-insoluble pesticide delivery systems in recent years. In this study, prochloraz nanoemulsions were obtained by selecting the mixing ratio of surfactants (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:6), surfactant concentration, and shearing time. The optimal formula was 10 wt % prochloraz, 6 wt % surfactant (2 wt % CO-100 + 4 wt % CO-360) dissolved in 6 wt % hydrocarbon solvent (S-100A), and deionized water replenished to 100 wt %. This formula meets the quality index standards of the Food and Agriculture Organization. Compared with oil-in-water emulsion (EW), the prochloraz nanoemulsion exhibited higher antifungal activity against Penicillium citrinum in vitro (lower LC50 of 1.17 mg L-1) and in vivo (fewer lesions). In addition, the L02 cells treated with the nanoemulsion had a higher survival rate and lower apoptosis rate at the same concentration. Results showed that the toxicity of the prochloraz nanoemulsion on L02 cells was lower than that of EW. The findings provide an important method for developing an efficient, safe, and environment-friendly nanoemulsion for postharvest fruit storage.
Collapse
Affiliation(s)
- Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinlian Wang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyong Yuan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Yang J, Feng J, He K, Chen Z, Chen W, Cao H, Yuan S. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control. PEST MANAGEMENT SCIENCE 2021; 77:4627-4637. [PMID: 34087044 DOI: 10.1002/ps.6502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Environmental stimuli-responsive release is one important way to reduce the dosage of pesticide, increase the usage efficiency and improve environmental compatibility. RESULTS On this basis, we synthesized mesoporous silica nanoparticles (MSNs) and modified them to develop a thermosensitive pesticide controlled release formulation (CRF). In this study, MSNs prepared by the sol-gel method were used as the core, poly (N-IsoPropylAcrylaMide) [P (NIPAM-MAA)] was used as the shell, and buprofezin (Bup) was loaded by adsorption. The prepared Bup@MSNs@P(NIPAM-MAA) could effectively prevent the degradation of buprofezin under UV light and exhibited excellent adhesion to rice leaves. The bioassay results showed that the mortality of Nilaparvata lugens (Stål) treated by Bup@MSNs@P(NIPAM-MAA) was positively correlated with temperature, resulting mainly from the change of release amount of buprofezin caused by temperature variation. Bup@MSNs@P(NIPAM-MAA) had long duration (20 days) for controlling N. lugens, and did not hinder the growth of rice. Meanwhile, Bup@MSNs@P(NIPAM-MAA) had low toxicity to zebrafish and human pneumonocyte BEAS-2B cells. CONCLUSION This novel thermosensitive pesticide CRF can be applied widely to other insecticides, thus greatly promoting the development of intelligent pesticide formulations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hongen Cao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Yuan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
20
|
Zhou Z, Gao Y, Chen X, Li Y, Tian Y, Wang H, Li X, Yu X, Cao Y. One-Pot Facile Synthesis of Double-Shelled Mesoporous Silica Microcapsules with an Improved Soft-Template Method for Sustainable Pest Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39066-39075. [PMID: 34387079 DOI: 10.1021/acsami.1c10135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A controlled release formulation based on silica microcapsules is an ideal selection to improve both the effective utilization and duration of pesticides to decrease ecological damage. Herein, a simple and green method for preparing double-shelled microcapsules was developed using a newly prepared quaternary ammonium ionic liquid (IL) as the functional additive to entrap avermectin (Ave) in mesoporous silica nanospheres (MSNs) and tannic acid-Cu (TA-Cu) complex as the sealing agent to form the core-shell structure (Ave-IL@MSN@TA-Cu). The obtained microcapsules with an average size of 538 nm had pH-responsive release property and good stability in soil. The half-life of microcapsules (34.66 days) was 3 times that of Ave emulsifiable concentrate (EC) (11.55 days) in a test soil, which illustrated that microcapsules could protect Ave from rapid degradation by microorganisms by releasing TA, copper, and quaternary ammonium in the soil. Ave-IL@MSN@TA-Cu microcapsules had better nematicidal activity and antibacterial activity than Ave EC due to the synergistic effect of Ave, IL, and copper incorporated in the microcapsules. Pot experiments showed that the control efficacy of microcapsules was 87.10% against Meloidogyne incognita, which is better than that of Ave EC (41.94%) at the concentration of 1.0 mg/plant by the root-irrigation method after 60 days of treatment owing to the extended duration of Ave in microcapsules. The simple and green method for the preparation of double-shelled microcapsules based on natural quaternary ammonium IL would have tremendous potential for the extensive development of controlled release pesticide formulations.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
21
|
Zhang M, Shen L, Dong S, Li B, Meng F, Si W, Yang W. DTBP‐Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp
3
)−H Bond Functionalization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ming‐Ming Zhang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Liu‐Yu Shen
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Sa Dong
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Bing Li
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Fei Meng
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Wei‐Jie Si
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Wen‐Chao Yang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
22
|
Somuncuoğlu B, Lee YL, Constantinou AP, Poussin DL, Georgiou TK. Ethyl methacrylate diblock copolymers as polymeric surfactants: Effect of molar mass and composition. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Liu Q, Gao Y, Fu X, Chen W, Yang J, Chen Z, Wang Z, Zhuansun X, Feng J, Chen Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201:111626. [PMID: 33631642 DOI: 10.1016/j.colsurfb.2021.111626] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Peppermint oil (PO) is one of the most popular and widely used essential oils. However, due to volatile and poor water solubility of volatile oil, its application in the fields of medicine and food is limited. In order to solve this problem, the high speed shearing technology was used to prepare the nanoemulsion from PO. By using a series of characterization methods, such as turbiscan scanning spectrum, dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), the best nanoemulsion formula was identified as PO 10 %, surfactant 8 % (Tween-60: EL-20 = 3:1) and deionized water 82 % (w/w). The inhibition strength of nanoemulsion on bacteria was evaluated by detecting the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) treated with peppermint oil nanoemulsion (PON) and observing the morphology of bacteria with biological scanning electron microscope (SEM). The results showed that PON had strong inhibitory effect on E. coli. At the concentration range of 0.02 μg/μL-0.2 μg/μL, the apoptosis rate of BEAS-2B cells was less than 10 % compared with control cells. All in all, the PON prepared under this formula is stable, which provides a reference for further exploration of essential oil as natural antibacterial materials in the future.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Functional Examination Department of Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|