1
|
Reisig D, Huseth A. Establishing best practices for insect resistance management: a new paradigm for genetically engineered toxins in cotton expressing Mpp51Aa2. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:1-8. [PMID: 39774870 DOI: 10.1093/jee/toae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.5% of exposed larvae for some of the main target pests in corn, Zea mays L. and cotton, Gossypium hirsutum L. In contrast, other target pests did not meet this high-dose criterion. Similarly, the recent release of ThryvOn cotton that expresses thysanopteran and hemipteran active Mpp51Aa2.834_16 toxin is not high dose, working on a combination of behavioral and sublethal effects to suppress populations. This unique mode of control has generated considerable uncertainty about what IRM strategies will be most effective to limit field-evolved resistance to this unique spectrum of pests. The goal of this manuscript is to present several knowledge gaps that exist in proposed Mpp51Aa2 IRM plans, focusing on its activity on thrips, Frankliniella spp. Addressing these gaps will be crucial to limit resistance and preserve the benefits that this technology may provide by alleviating reliance on conventional insecticides and seed treatments. Broadly, these considerations will be important for future GE events that are non-high dose but remain valuable components of a more holistic insect management programs that integrate multiple tactics to reduce conventional insecticide use for challenging pests.
Collapse
Affiliation(s)
- Dominic Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC, USA
| | - Anders Huseth
- Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Li M, Yang L, Jia S, Kang S, Yang Y, Lu Y. Effects of Bt-cotton cultivation on Helicoverpa armigera activity-density in agricultural landscapes in northwestern China. PEST MANAGEMENT SCIENCE 2025; 81:689-697. [PMID: 39377545 DOI: 10.1002/ps.8467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cotton bollworm, Helicoverpa armigera (Hübner), threatens many crops. Bacillus thuringiensis (Bt) cotton has been planted to control this severe pest in northern Xinjiang, China. In 2021 and 2022, we monitored the activity densities of H. armigera males using sex pheromone traps in Bt cotton and non-Bt maize fields. We assessed how much of the population variation of cotton bollworm in the fields within the Bt cotton planting area could be explained by (i) landscape composition [including the proportion of Bt cotton among total area of host crops (cotton, maize, wheat and vegetables)], (ii) landscape configuration (patch density - i.e. the number of patches within a given area) across 0.5-2.0 km scales, or (iii) the population density of the previous pest generation. RESULTS Cotton bollworm activity-density exhibited two distinct peaks annually (mid- to late May and mid-July each year), with the number of males caught during the second peak significantly and positively correlated with the first peak's numbers. The suppressive effect of the proportion of Bt cotton in the landscape on bollworms was more pronounced at larger scales, and patch density had a significant positive effect on bollworm activity density. CONCLUSIONS These findings support (i) the promotion of Bt cotton in northwestern China has reduced and suppressed the occurrence of cotton bollworms at the landscape scale and (ii) the importance of controlling spring populations for effective summer outbreak management, and (iii) that cotton bollworm control should be coordinated at a large scale across multiple crop fields. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minlong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangshuang Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyuan Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yizhong Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Slone E, Green J, Kaur N, Walenta DL, Anderson NP, Cruse C, Dorman SJ. Forecasting the seasonal phenology of Agrotis ipsilon in Oregon grass seed and vegetable agroecosystems. FRONTIERS IN INSECT SCIENCE 2025; 4:1505524. [PMID: 39896271 PMCID: PMC11782255 DOI: 10.3389/finsc.2024.1505524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Agrotis ipsilon (Lepidoptera: Noctuidae) is a significant pest in Oregon grass seed and vegetable production systems. Effective management of this species relies on timely foliar insecticide applications targeting immature A. ipsilon larvae before crop damage is observed. Regionally specific phenological models serve as a critical component of effective areawide pest management plans to inform the timing of pest monitoring and management action. Seasonal modeling of A. ipsilon phenology is complicated by their migratory behavior and limited knowledge of temperature-dependent development on affected crop hosts. Growth chamber experiments at five constant temperatures (12 to 32°C) were conducted to determine the temperature-dependent development of A. ispsilon life stages on an artificial and perennial ryegrass diet. The completion of one A. ipsilon generation (egg-to-adult) required 658.71 ± 31.49, 601.98 ± 16.01, 648.47 ± 21.35 degree days with a base temperature threshold of 9.8°C for artificial diet, perennial ryegrass diet, and across both diet types, respectively. The timing of migrant adults was predicted with surface air temperature using non-linear regression with A. ipsilon abundance data collected from pheromone-baited traps in 77 total commercial grass seed (n = 57) and vegetable (n = 20) production fields across 19 sampling years (1996 to 2023). Developmental parameters and predictions of adult arrival were used to develop general and grass seed specific phenology model projections for A. ipsilon populations in Oregon. Regionally validated phenology models can be incorporated into decision support tools to forecast the spatiotemporal occurrence of crop-damaging life stages of priority insect pests.
Collapse
Affiliation(s)
- Emma Slone
- USDA-ARS, Forage Seed and Cereal Research Unit, Corvallis, OR, United States
| | - Jessica Green
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Navneet Kaur
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Darrin L. Walenta
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Nicole P. Anderson
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Casey Cruse
- USDA-ARS, Forage Seed and Cereal Research Unit, Corvallis, OR, United States
| | - Seth J. Dorman
- USDA-ARS, Forage Seed and Cereal Research Unit, Corvallis, OR, United States
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Pezzini DT, Reisig DD, Buntin GD, Del Pozo-Valdivia AI, Gould F, Paula-Moraes SV, Reay-Jones FP. Impact of seed blend and structured maize refuge on Helicoverpa zea (Lepidoptera: Noctuidae) potential phenological resistance development parameters in pupae and adults. PEST MANAGEMENT SCIENCE 2023; 79:3493-3503. [PMID: 37139844 DOI: 10.1002/ps.7529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion. RESULTS From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time. CONCLUSION Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela T Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC, USA
| | - G David Buntin
- Department of Entomology, University of Georgia - Griffin Campus, Griffin, GA, USA
| | - Alejandro I Del Pozo-Valdivia
- Department of Entomology, Hampton Roads Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Virginia Beach, VA, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Silvana V Paula-Moraes
- Entomology and Nematology Department, West Florida Research and Education Center, University of Florida, Jay, FL, USA
| | - Francis Pf Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Florence, SC, USA
| |
Collapse
|
5
|
Guan F, Dai X, Hou B, Wu S, Yang Y, Lu Y, Wu K, Tabashnik BE, Wu Y. Refuges of conventional host plants counter dominant resistance of cotton bollworm to transgenic Bt cotton. iScience 2023; 26:106768. [PMID: 37216101 PMCID: PMC10196555 DOI: 10.1016/j.isci.2023.106768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Transgenic crops have revolutionized insect pest control, but evolution of resistance by pests threatens their continued success. The primary strategy for combating pest resistance to crops producing insecticidal proteins from Bacillus thuringiensis (Bt) uses refuges of non-Bt host plants to allow survival of susceptible insects. The prevailing paradigm is that refuges delay resistance that is rare and recessively inherited. However, we discovered refuges countered resistance to Bt cotton that was neither rare nor recessive. In a 15-year field study of the cotton bollworm, the frequency of a mutation conferring dominant resistance to Bt cotton surged 100-fold from 2006 to 2016 yet did not rise from 2016 to 2020. Computer simulations indicate the increased refuge percentage from 2016 to 2020 is sufficient to explain the observed halt in the evolution of resistance. The results also demonstrate the efficacy of a Bt crop can be sustained by non-Bt refuges of other crops.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Dai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bofeng Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Santiago-González JC, Kerns DL, Head GP, Yang F. A Modified F2 Screen for Estimating Cry1Ac and Cry2Ab Resistance Allele Frequencies in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:289-296. [PMID: 36610074 DOI: 10.1093/jee/toac181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 05/30/2023]
Abstract
Evaluating the frequency of resistance alleles is important for resistance management and sustainable use of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a major crop pest in the United States that has evolved practical resistance to the crystalline (Cry) proteins in Bt corn and cotton. The standard F2 screen for estimating resistance allele frequency does not work well for H. zea because successful single-pair matings are rare. In this study, we developed and implemented a modified F2 screen for H. zea that generates F1 progeny by crossing three laboratory susceptible female moths with one feral male moth instead of single-pair crosses. During 2019-2020, we used this modified method to establish 192 F2 families from 623 matings between susceptible females and feral males from Arkansas, Louisiana, Mississippi, and Tennessee. From each F2 family, we screened 128 neonates against discriminating concentrations of Cry1Ac and Cry2Ab in diet overlay bioassays. Based on these discriminating concentration bioassays, families were considered positive for resistance if at least five larvae survived to second instar, including at least one to third instar. The percentage of positive families was 92.7% for Cry1Ac and 38.5% for Cry2Ab, which yields an estimated resistance allele frequency (with 95% confidence interval) of 0.722 (0.688-0.764) for Cry1Ac and 0.217 (0.179-0.261) for Cry2Ab. The modified F2 screen developed and implemented here may be useful for future resistance monitoring studies of H. zea and other pests.
Collapse
Affiliation(s)
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Reisig D, Buntin GD, Greene JK, Paula-Moraes SV, Reay-Jones F, Roberts P, Smith R, Taylor SV. Magnitude and Extent of Helicoverpa zea Resistance Levels to Cry1Ac and Cry2Ab2 across the Southeastern USA. INSECTS 2023; 14:262. [PMID: 36975947 PMCID: PMC10058025 DOI: 10.3390/insects14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
After resistance is first detected, continued resistance monitoring can inform decisions on how to effectively manage resistant populations. We monitored for resistance to Cry1Ac (2018 and 2019) and Cry2Ab2 (2019) from southeastern USA populations of Helicoverpa zea. We collected larvae from various plant hosts, sib-mated the adults, and tested neonates using diet-overlay bioassays and compared them to susceptible populations for resistance estimates. We also compared LC50 values with larval survival, weight and larval inhibition at the highest dose tested using regression, and found that LC50 values were negatively correlated with survival for both proteins. Finally, we compared resistance rations between Cry1Ac and Cry2Ab2 during 2019. Some populations were resistant to Cry1Ac, and most were resistant to CryAb2; Cry1Ac resistance ratios were lower than Cry2Ab2 during 2019. Survival was positively correlated with larval weight inhibition for Cry2Ab. This contrasts with other studies in both the mid-southern and southeastern USA, where resistance to Cry1Ac, Cry1A.105, and Cry2Ab2 increased over time and was found in a majority of populations. This indicates that cotton expressing Cry proteins in the southeastern USA was at variable risk for damage in this region.
Collapse
Affiliation(s)
- Dominic Reisig
- Department of Entomology, The Vernon James Center, North Carolina State University, Plymouth, NC 27962, USA
| | - G. David Buntin
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA
| | - Jeremy K. Greene
- Department of Plant and Environmental Sciences, Clemson University, Blackville, SC 29817, USA
| | | | - Francis Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Blackville, SC 29817, USA
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA
| | - Ron Smith
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Sally V. Taylor
- Department of Entomology, Virginia Polytechnic Institute and State University, Suffolk, VA 23437, USA
| |
Collapse
|
8
|
Mahas JW, Steury TD, Huseth AS, Jacobson AL. Imidacloprid-resistant Aphis gossypii populations are more common in cotton-dominated landscapes. PEST MANAGEMENT SCIENCE 2023; 79:1040-1047. [PMID: 36327354 DOI: 10.1002/ps.7274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Widespread reports of reduced efficacy of imidacloprid for managing cotton aphids (Aphis gossypii Glover) in cotton (Gossypium hirsutum L.) prompted an investigation to characterize the susceptibility of 43 populations over a 2-year period. The susceptibility of A. gossypii populations to imidacloprid was examined by calculating LC50 values. Further analyses related resistance assay results to a gradient of cotton production intensity. RESULTS Concentration-mortality bioassays documencted populations that were 4.26-607.16 times more resistant than the susceptible laboratory population. There was a significant positive relationship between LC50 values and percentage of cotton within 2.5- and 5-km buffers surrounding collection sites. No significant relationship was detected between LC50 values and the percentage of alternative crop and noncrop hosts. CONCLUSION Variable and high levels of resistance were detected in A. gossypii populations, and this variation was positively associated with cotton production intensity. Cotton is a host that may receive multiple applications of neonicotinoids (via seed treatment and foliar sprays) annually for seedling and mid-season pests. Rotating modes of action and limiting insecticide use should be implemented to delay the evolution of insecticide resistance in A. gossypii populations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- John W Mahas
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Todd D Steury
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Gassmann AJ, Reisig DD. Management of Insect Pests with Bt Crops in the United States. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:31-49. [PMID: 36170641 DOI: 10.1146/annurev-ento-120220-105502] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest-crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.
Collapse
Affiliation(s)
- Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA;
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, North Carolina, USA
| |
Collapse
|
10
|
Abstract
Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.
Collapse
|
11
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|