1
|
Sun LN, Meng JY, Wang Z, Lin SY, Shen J, Yan S. Research progress of aphid immunity system: Potential effective target for green pest management. INSECT SCIENCE 2024; 31:1662-1674. [PMID: 38415382 DOI: 10.1111/1744-7917.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Due to the absence of acquired immunity, insects primarily rely on their innate immune system to resist pathogenic microorganisms and parasitoids in natural habitats. This innate immune system can be classified into cellular immunity and humoral immunity. Cellular immunity is mediated by hemocytes, which perform phagocytosis, aggregation, and encapsulation to fight against invaders, whereas the humoral immunity primarily activates the immune signaling pathways and induces the generation of immune effectors. Existing studies have revealed that the hemipteran aphids lack some crucial immune genes compared to other insect species, indicating the different immune mechanisms in aphids. The current review summarizes the adverse impacts of pathogenic microorganisms and parasitoids on aphids, introduces the cellular and humoral immune systems in insects, and analyzes the differences between aphids and other insect species. Furthermore, our review also discussed the existing prospects and challenges in aphid immunity research, and proposed the potential application of immune genes in green pest management.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Yang Lin
- Pu'er Agricultural Science Research Institute, Pu'er, Yunnan Province, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Čkrkić J, Petrović A, Kocić K, Mitrovski-Bogdanović A, Tomanović Ž. It's time for Africa - hidden diversity of the Aphidius colemani species group (Hymenoptera, Braconidae, Aphidiinae) south of the Sahara. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:433-443. [PMID: 38711293 DOI: 10.1017/s0007485324000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Aphidius colemani is an important biological control agent, used in greenhouses and open fields against aphid pests. Despite this economical importance, A. colemani, along with A. transcaspicus and A. platensis, has gone through a complex taxonomical history. The three species have only recently gained status as separate species again, comprising the morphologically defined Aphidius colemani species group. Other than sporadic records probably as a consequence of escape from greenhouses, the A. colemani species group members prefer warmer regions and there are numerous records from South America, Southern Europe and Asia. Based on slide-mounted material collected in the period 1964-2001 in Africa, we describe five new species belonging to this group, and report A. colemani, A. transcaspicus and A. platensis from several African countries. This data opens questions about the origin of the group and presents potential for the diversification of biological control agents against aphid pests.
Collapse
Affiliation(s)
- Jelisaveta Čkrkić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Korana Kocić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ana Mitrovski-Bogdanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Jiang S, Li Z, Li J, Xu K, Ye Y. Analysis of Genetic Diversity and Structure of Eight Populations of Nerita yoldii along the Coast of China Based on Mitochondrial COI Gene. Animals (Basel) 2024; 14:718. [PMID: 38473102 DOI: 10.3390/ani14050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Nerita yoldii is a euryhaline species commonly found in the intertidal zone. To investigate the genetic diversity of 233 N. yoldii individuals from eight locations along the coast of China, we utilized the mitochondrial COI gene as a molecular marker. A total of 34 haplotypes were detected, exhibiting a mean haplotype diversity (Hd) of 0.5915 and a mean nucleotide diversity (Pi) of 0.0025, indicating high levels of genetic diversity among all populations. An analysis of molecular variance (AMOVA) indicated that the primary source of genetic variation occurs within populations. In addition, neutral tests and mismatch analyses suggested that N. yoldii populations may have experienced bottleneck events. Moderate genetic differentiation was observed between Xiapu and other populations, excluding the Taizhou population, and may be attributed to the ocean currents. Intensively studying the genetic variation and population structure of N. yoldii populations contributes to understanding the current population genetics of N. yoldii in the coastal regions of China. This not only provides a reference for the study of other organisms in the same region but also lays the foundation for the systematic evolution of the Neritidae family.
Collapse
Affiliation(s)
- Senping Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Lin JY, He J, Ma LJ, Yang HL, Wei SJ, Song F. The complete mitochondrial genome of Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae). Mitochondrial DNA B Resour 2024; 9:257-261. [PMID: 38348095 PMCID: PMC10860412 DOI: 10.1080/23802359.2024.2311745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
The genome-level features are crucial genetic resources for species identification and phylogenetic analysis. Here, the complete mitochondrial genome of Aphidius colemani Viereck 1912 (Hymenoptera: Braconidae: Aphidiinae) was sequenced, determined and analyzed. The circular genome is 16,372 bp in length with an overall base composition of 38.9% for A, 46.2% for T, 6.7% for C, and 8.2% for G. The mitochondrial genome of A. colemani contained 13 protein-coding genes that initiated by the ATN codon, 22 transfer RNA genes, two ribosomal RNA genes (rRNAs), and a control region (CR). It shared the same gene arrangement patterns that occurred in two tRNA clusters of trnI-trnQ-trnM and trnW-trnC-trnY with Aphidius gifuensis. Phylogenetic analyses using Bayesian inference and Maximum-likelihood methods supported that the two species of Aphidiinae formed a clade and sister to other subfamilies of Braconidae.
Collapse
Affiliation(s)
- Jia-Yu Lin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Li-Jun Ma
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Hai-Lin Yang
- Yuxi Branch, Yunnan Tobacco Company, Yuxi, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hu XS, Peng JF, Wang H, Han SQ, Li JW, Yan FY, Zhou ZF, Zhang H, Liu TX. Early monitoring of parasitism by Aphidiinae parasitoids on the grain aphid Sitobion miscanthi in wheat fields using DNA barcoding. PEST MANAGEMENT SCIENCE 2023; 79:1381-1387. [PMID: 36444778 DOI: 10.1002/ps.7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sitobion miscanthi is a major wheat pest at the grain-filling stage found in China. Identifying parasitoid species and understanding parasitism rates are keys to controlling the aphids via natural enemies in the wheat field. RESULTS In the present study, a method based on DNA barcoding for early determination of the community composition of Aphidiinae parasitoids and parasitism on the aphid was developed. The proposed method detected Aphidius gifuensis as the predominant parasite, with parasitism rates of 40.1 ± 2.8% in 2019 and 65.7 ± 3.7% in 2022, and found that the rate varied significantly among different wheat varieties. COI primers efficiently amplified the Aphidiinae parasitoids COI fragments and amplified the aphid COI fragments derived from parasitized (mummified) S. miscanthi. Thus, the COI barcode is not sufficiently specific to unambiguously detect immature parasitoids inside their S. miscanthi hosts. However, it can be used to detect the DNA extracted from mummified aphids. In contrast, the 16S and LWRh primers effectively amplified and identified the parasitoids in parasitized aphids. The 16S primer was reliable even in the early stages of parasitism (24 h) and for DNA samples stored at -20 °C for 5 days. The three barcodes from COI, 16S, and LWRh genes could not clearly distinguish a few certain Aphidiinae species owing to relatively low intraspecific and interspecific diversity. CONCLUSION The morphological features remain indispensable when identifying Aphidiinae species. Nonetheless, the COI and 16S primers could be used in combination for monitoring the parasitism rates on S. miscanthi in wheat fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang-Shun Hu
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing-Feng Peng
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Han Wang
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shun-Qin Han
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing-Wen Li
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fan-Ye Yan
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Fang Zhou
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas, Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Tomanović Ž, Kavallieratos NG, Ye Z, Nika EP, Petrović A, Vollhardt IMG, Vorburger C. Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology. INSECTS 2022; 13:1142. [PMID: 36555052 PMCID: PMC9785021 DOI: 10.3390/insects13121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.
Collapse
Affiliation(s)
- Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Zhengpei Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China
| | - Erifili P. Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Science, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Plant-Rich Field Margins Influence Natural Predators of Aphids More Than Intercropping in Common Bean. INSECTS 2022; 13:insects13070569. [PMID: 35886745 PMCID: PMC9322975 DOI: 10.3390/insects13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Field margin plants are important in providing resources for natural enemies (NEs) and improving biological control of crop pests. However, the use of field margin plants for biological control particularly of important common bean pests is understudied in smallholder farming systems of sub-Saharan Africa (SSA). We evaluated the potential of field margin plants with respect to intercropping systems in common bean fields to enhance the population of NEs of common bean pests. We observed a high assemblage of important NEs of common bean pests for some insect taxa with minimal impact of intercropping on NEs. Field margin plants could be managed to provide a wide range of resources to NEs and therefore biological control of common bean pests. Abstract Field margins support important ecosystem services including natural pest regulation. We investigated the influence of field margins on the spatial and temporal distribution of natural enemies (NEs) of bean pests in smallholder farming systems. We sampled NEs from high and low plant diversity bean fields using sweep netting and coloured sticky traps, comparing monocropped and intercropped farms. NEs collected from within crops included predatory bugs, lacewings, predatory flies, parasitic flies, parasitic wasps, lady beetles, and a range of other predatory beetles; with the most dominant group being parasitic wasps. Overall, high plant diversity fields had a higher number of NEs than low-diversity fields, regardless of sampling methods. The field margin had a significantly higher number of lacewings, parasitic wasps, predatory bugs, syrphid flies, and other predatory beetles relative to the crop, but beneficial insects were collected throughout the fields. However, we observed marginally higher populations of NEs in intercropping than in monocropping although the effect was not significant in both low and high plant diversity fields. We recommend smallholder farmers protect the field margins for the added benefit of natural pest regulation in their fields.
Collapse
|
8
|
Sizing the Knowledge Gap in Taxonomy: The Last Dozen Years of Aphidiinae Research. INSECTS 2022; 13:insects13020170. [PMID: 35206743 PMCID: PMC8874855 DOI: 10.3390/insects13020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Taxonomy is a biological discipline with the task to identify, name, and describe organisms, and as such, it provides necessary data for all other biological disciplines. The biodiversity crisis through which we are living draws attention to the crucial role of taxonomy in biology today. At the same time, the scientific community, as well as society in general, has become more aware of the difficulties associated with taxonomy, such as gaps in taxonomic knowledge, a lack of taxonomic infrastructure, and an insufficient number of taxonomic experts (“taxonomic impediment”). With this study, we tried to size this knowledge gap by analyzing the taxonomical studies on Aphidiinae (Hymenoptera: Braconidae) conducted from 2010 to 2021. Aphidiinae are endoparasitoids of aphids; a single specimen completes its development inside the living aphid host, which are used in biological control programs. Here, we summarize the knowledge gathered over the last dozen years and discuss it in a general context. Abstract Taxonomic impediment is one of the main roadblocks to managing the current biodiversity crisis. Insect taxonomy is the biggest contributor to the taxonomic impediment, both in terms of the knowledge gap and the lack of experts. With this study, we tried to size the knowledge gap by analyzing taxonomical studies on the subfamily Aphidiinae (Hymenoptera: Braconidae) conducted from 2010 to 2021. All available taxonomic knowledge gathered in this period is critically summarized: newly described species, detection of alien species, published identification keys, etc. All findings are discussed relative to the current state of general taxonomy. Future prospects for taxonomy are also discussed.
Collapse
|