1
|
Liu X, Yang H, Sun Y, Huang Y, Hong S, Yuan H, Gao W, Tang L, Fan Z. Design, synthesis and systemic acquired resistance of 2-benzothiadiazolylquinoline-4-carboxamides by COI1 based virtual screening. Mol Divers 2025; 29:269-279. [PMID: 38679675 DOI: 10.1007/s11030-024-10849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Coronatine-insensitive 1 (COI1) has been identified as a target receptor of plant elicitor coronatine (COR). To discover novel plant elicitor leads, most of the potential molecules among 129 compounds discovered from the ZINC database by docking based virtual screening targeting COI1 were quinoline amides. On this lead basis, 2-benzothiadiazolylquinoline-4-carboxamides were rationally designed and synthesized for bioassay. All target compounds did not show significantly in vitro antifungal activity, compounds 4d, 4e and 4o displayed good in vivo systemic acquired resistance activity for Arabidopsis thaliana against Hyaloperonospora arabidopsidis isolate Noco2 with over 80% of inhibitory rate at the concentration of 50 μM. These results indicate that 2-benzothiadiazolylquinoline-4-carboxamides are promising plant elicitor leads for further study.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yaru Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shuang Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China.
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin, 300071, People's Republic of China.
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Liao A, Guo RJ, Ma X, Wu J. Thiazole and Isothiazole Chemistry in Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:30-46. [PMID: 39727107 DOI: 10.1021/acs.jafc.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Thiazole and isothiazole are types of five-membered heterocycles that contain both sulfur and nitrogen atoms. They have gained attention in the field of green pesticide research due to their low toxicity, strong biological activity, and ability to undergo diverse structural modifications. By incorporating thiazole and isothiazole groups into various compounds, researchers have been able to create a wide range of pesticides with broad-spectrum effectiveness. Understanding the relationship between the structure of these compounds and their activities is crucial for the development of new and highly potent pesticides. This review highlights thiazole and isothiazole derivatives with various biological activities and aims to inspire the development of innovative pesticide based on these structures.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ren Jiang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xining Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Yu Z, Meng F, Ren J, Gao W, Liu X, Xiong L, Yang N, Li Y, Li Z, Fan Z. 3D-QSAR Directed Discovery of Novel Halogenated Phenyl 3-Trifluoroethoxypyrazole Containing Ultrahigh Active Insecticidal Anthranilic Diamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15665-15681. [PMID: 36503247 DOI: 10.1021/acs.jafc.2c05738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pests are one of the major factors causing crop damage and food security problems worldwide. Based on our previous studies on the discovery of insecticidal leads targeting the ryanodine receptors (RyRs), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to design and synthesize a series of anthranilic diamides containing a halogenated phenyl 3-trifluoroethoxypyrazole moiety. The preliminary bioassays disclosed that IIb, IIIb, and IIIf against Mythimna separata showed comparable activity to chloranthraniliprole (LC50: 0.16, 0.16, 0.14, and 0.13 mg·L-1, respectively). More than half of the target compounds displayed good activity against Plutella xylostella, where IIIf was the most active compound, 25 times more active than chloranthraniliprole (LC50: 6.0 × 10-6 versus 1.5 × 10-4 mg·L-1). For Spodoptera frugiperda, IIIf displayed slightly inferior potency to chlorantraniliprole (LC50: 0.47 versus 0.31 mg·L-1). For RyR mutants of S. frugiperda (G4891E, I4734M), compound IIIf could show higher affinity than chlorantraniliprole according to the binding mode and energy in molecular docking experiments. Calcium imaging technique, molecular docking, density functional theory calculations, and electrostatic potential studies validated that the RyR was the target of the most active candidate IIIf, which deserves further development.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Fanfei Meng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
5
|
Synthesis and Biological Activity of Waltherione F‐derived Diamide Derivatives Containing
4‐Quinolone
Group. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Gao W, Zhang Y, Ye R, Qi X, Chen L, Liu X, Tang L, Chen L, Chen H, Fan Z. Discovery of Novel Triazolothiadiazines as Fungicidal Leads Targeting Pyruvate Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1047-1057. [PMID: 35077164 DOI: 10.1021/acs.jafc.1c07022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pyruvate kinase (PK) was discovered as a potent new target for novel fungicide development. A series of novel triazolothiadiazine derivatives were rationally designed and synthesized by a ring expansion strategy and computer-aided pesticide design using the 3D structure of Rhizoctonia solani PK (RsPK) obtained by homology modeling as a receptor and our previously discovered lead YZK-C22 as a ligand. The in vitro bioassay results indicated that compounds 4g, 6h, 6m, 6n, 6o, and 6p exhibited good activity against R. solani with the EC50 values falling between 10.99 and 72.76 μM. Especially, 6m showed similar potency to YZK-C22 (10.99 vs 11.97 μM of the EC50 value, respectively). The in vivo bioassay results suggested that 6m against R. solani at a concentration of 200 μg/mL displayed a numerically higher inhibition than YZK-C22 (70 vs 60%, respectively). A field experiment validated that 6m at an application rate of 120 g ai/ha showed comparable efficacy against R. solani to thifluzamide at an application rate of 80 g ai/ha (77.80 vs 84.5%, respectively). Enzymatic inhibition suggested that the potency of 6m was about twofold lower than that of YZK-C22 (67.30 vs 32.64 μM of IC50, respectively). Fluorescence quenching studies validated that RsPK was quenched by both 6m and YZK-C22, implying that they both might act at the same target site of PK. A possible binding conformation of 6m in the RsPK active site was depicted by molecular docking. Our studies suggest that 6m could be a fungicidal lead targeting PK.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rong Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xin Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lei Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Hongyu Chen
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|