1
|
Wang Q, Yang D, Rui C, Zhou L, Li R, Wang L, Huang W, Ji X, Yang Q, Liang P, Yuan H, Cui L. Seed treatment with chlorantraniliprole and carbaryl mixture for managing fall armyworm on maize: systemic synergism, control efficiency and synergistic mechanism. PEST MANAGEMENT SCIENCE 2023; 79:464-473. [PMID: 36209490 DOI: 10.1002/ps.7215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fall armyworm (Spodoptera frugiperda) is one of the major invasive pests in China, and has been widely controlled by labor-intensive foliar sprays of agrochemicals in maize (Zea mays L.). RESULTS Systemic bioassay showed that mixtures of chlorantraniliprole (Chlor) and carbaryl (Carb) had dramatically synergistic effect on toxicity to S. frugiperda. Particularly, a mixture of Chlor with Carb at a mass ratio of 2:1 (MCC) exhibited the highest toxicity to S. frugiperda. Therefore, seed treatment of Chlor mixed with Carb was studied as a simple, accurate, efficient and low-cost control technology. Our results showed that MCC treatment shortened the median lethal time and 90% lethal time to S. frugiperda compared to Chlor- and Carb-alone treatments. Meanwhile, smaller leaf consumption by S. frugiperda was recorded under MCC treatment compared to Chlor- and Carb-alone treatments. In field trial, maize-seed treatment with MCC showed efficacy up to 39 days post-emergence in preventing S. frugiperda foliar damage at a low infestation pressure. Moreover, chemical quantification by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed that Chlor residues were more absorbed and concentrated in maize leaves of MCC treatment, compared to that of Chlor-alone treatment. CONCLUSION These results suggested that seed treatment with MCC can be applied to increase the control efficacy and reduce the cost of Chlor-alone treatment for controlling S. frugiperda. The present study provided evidence of an enhanced translocation and accumulation of Chlor residues in maize leaves under MCC treatment, which likely contributed to a synergistic effect against S. frugiperda. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Daibin Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changhui Rui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Runan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiling Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejiao Ji
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjie Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Huizhu Yuan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Zhao H, Zhu Z, Xing G, Li Y, Zhou X, Wang J, Li G, Cao H, Huang Y. Deformed Mediated Larval Incisor Lobe Development Causes Differing Feeding Behavior between Oriental Armyworm and Fall Armyworm. INSECTS 2022; 13:insects13070594. [PMID: 35886770 PMCID: PMC9320430 DOI: 10.3390/insects13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/10/2022]
Abstract
Mandibular incisor lobes are important for insect feeding behavior, living habits and niche. However, the molecular regulation of insect incisor lobe development remains unknown. In this study, we found that two maize pests, oriental armyworm Mythimna separata and fall armyworm Spodoptera frugiperda, have different feeding patterns in maize, which are closely associated with the different development patterns of their incisor lobes. Different from first to sixth instar S. frugiperda, which feed on leaf tissues and whorls with sharp incisor lobes, older instars of M. separata feed from leaf margins with no incisor lobes. Hox gene Deformed (Dfd) is important for head appendages, but its function in incisor lobe development is not clear. Here, Dfds were identified from two armyworm species, and both were expressed highly in heads and eggs. Interestingly, the expression levels of MsDfd were relatively high in larval mandibles and decreased dramatically from fourth-instar mandibles in M. separata. Knockdown of MsDfd resulted in malformed mandibles with no incisor lobe in M. separata, making the larvae unable to perform window-feeding. However, RNAi of SfDfd did not affect the mandibles and window-feeding pattern of S. frugiperda, indicating the different roles of Dfd in these two species. Moreover, the mortality of new first instar M. separata increased after feeding dsMsDfd but did not for S. frugiperda feeding dsSfDfd. These findings revealed that Dfd mediated the larval mandibular incisor lobe morphology, affecting its feeding pattern in M. separata, broadening the knowledge of Dfd functions in insect mandibles and feeding behavior.
Collapse
Affiliation(s)
- Hailong Zhao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Zeng Zhu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei 230036, China;
| | - Xue Zhou
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Jingjing Wang
- Plant Protection Station of Anhui Province, Hefei 230061, China;
| | - Guiting Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
- Correspondence:
| |
Collapse
|
3
|
Neves TN, Foresti J, Silva PR, Alves E, Rocha R, Oliveira C, Picanço MC, Pereira EJ. Insecticide seed treatment against corn leafhopper: helping protect grain yield in critical plant growth stages. PEST MANAGEMENT SCIENCE 2022; 78:1482-1491. [PMID: 34953036 DOI: 10.1002/ps.6766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/27/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The corn leafhopper, Dalbulus maidis (Hemiptera: Cicadellidae), spreads maize stunt pathogens and requires timely and effective crop protection. We determined the interaction between maize phenology and the vector feeding/infection period by stunt pathogens with the residual efficacy of neonicotinoid insecticidal seed treatments. Greenhouse- and field-grown maize plants, seed-treated with clothianidin or imidacloprid insecticides, were infested during seven growth stages with corn leafhoppers reared under controlled conditions on maize plants displaying infection symptoms by both spiroplasma (corn stunt spiroplasma, Spiroplasma kunkelii) and phytoplasma (maize bushy phytoplasma) pathogens. RESULTS In the greenhouse and field settings, seed treatment reduced the stunt disease symptoms and corn yield loss during the VE-V4 maize growth stages and caused no phytotoxicity. The neonicotinoid seed treatment reduced 20-60% of the yield losses from the corn stunt disease until the V4 growth stage. Infestation by infective corn leafhoppers in the V12 maize growth stage caused a 25-30% yield loss irrespective of seed treatment, yet no stunt disease symptom was evident. Nonetheless, corn yield losses and visual stunt symptoms as rated by a nine-category ordinal scale were strongly correlated (r = 0.79, P < 0.01). CONCLUSION These results reinforce that maize plants are more susceptible to leafhopper stunt disease during the VE-V4 growth stages (emergence to the fourth-leaf stage). Seed treatment helps reduce the damage in the early growth stages (VE-V2), although supplemental control measures depending on leafhopper population density may be needed from VE-V12 to protect yield losses from the maize stunt condition. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Taline Nc Neves
- Crop Protection Discovery & Development, Corteva Agriscience, Rio Verde, Brazil
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Josemar Foresti
- Crop Protection Discovery & Development, Corteva Agriscience, Toledo, Brazil
| | | | | | | | - Camila Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Eliseu Jg Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal Viçosa, Viçosa, Brazil
| |
Collapse
|