1
|
Zhao R, Jia W, Jiang Y, Wu X, Jiang X, Song S, Zhang J, Shen H, Shen J. An Iron-Based Metal-Organic Framework as Nanocarrier for Lambda-Cyhalothrin Delivery: pH-Responsive Controlled Release, Enhanced Leaf Adhesion, and Prolonged Duration Period against Culex pipiens pallens. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40401553 DOI: 10.1021/acs.langmuir.5c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Lambda-Cyhalothrin (LC) is a high-efficiency and broad-spectrum insecticide. However, due to its poor water dispersion stability and unstable efficacy, it has many problems in practical applications. Therefore, there is an urgent need to develop new formulations with stability, low toxicity, and environmental friendliness to overcome the drawbacks of traditional pesticide formulations. This study designed an iron-based metal-organic framework (MIL-101(Fe)) as a nanocarrier for the loading of LC and then surface modified it with polydopamine (PDA) to form the nanopesticide PDA-LC-MIL. The results showed that PDA-LC-MIL has good stability and can achieve controlled release of pesticide by adjusting the pH value. In addition, it also has a good leaf affinity and can effectively adhere on crop leaves, improving the utilization rate of pesticides. The insecticidal experimental results indicate that PDA-LC-MIL has significantly improved sustained insecticidal activity. PDA-LC-MIL also has good biocompatibility and shows no significant inhibitory effect on seed germination and seedling growth of Vigna radiata (L.) Wilczek and maize. Therefore, we firmly believe that MIL-based nanopesticides will have broad application prospects in the field of green pesticides and modern agriculture.
Collapse
Affiliation(s)
- Rong Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Jia
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou 225009, China
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou 225009, China
| | - Xiaoju Wu
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou 225009, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Shi Y, Jiao Z, Wang J, Wang Z, Chu C, Guo Y, Lv P, Cao J. Graphene oxide enhances aphid resistance in sorghum via the miR319-SbTCP7-SbLOX3 Pathway. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40397692 DOI: 10.1111/pbi.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/30/2025] [Accepted: 04/26/2025] [Indexed: 05/23/2025]
Abstract
The aphid (Melanaphis sacchari) has emerged as a formidable pest, devastating sorghum plants and highlighting the need for sustainable management strategies. Graphene oxide (GO), as a novel material, has garnered attention for its use in crop cultivation and management, but its effects on biotic stresses remain elusive. Here, we used 10 mg/L GO to spray aphid-stressed sorghum seedlings four times in total. GO exposure reduced 50% H2O2 from the reactive oxygen species (ROS) burst induced by the aphid. Further analysis revealed that GO within the cells acts as a nanozyme, mimicking and enhancing the catalytic activity of the ROS-scavenging system to maintain ROS homeostasis, protecting normal plant growth and development under aphid stress. Moreover, the moderate increase in H2O2 in GO-treated, aphid-infected seedlings blocked the biogenesis of miR319, leading to the induction of its target gene SbTCP7, which in turn activated the transcription of SbLOX3, a rate-limiting enzyme in jasmonic acid (JA) biosynthesis. Subsequent molecular and genetic assays confirmed that the miR319-SbTCP7 module enhances JA metabolism, promoting the accumulation of JA and its active derivative jasmonic acid-isoleucine (JA-Ile) to combat aphids. Our results suggest that GO, as a potential nanozyme, enhances the aphid resistance of sorghum through the miR319-SbTCP7 module to regulate JA synthesis, indicating a novel cultivation strategy for improving pest management via nanomaterials. This frontier research has opened new avenues for crop protection against invasive pests like aphids.
Collapse
Affiliation(s)
- Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Cheng Chu
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Yongchao Guo
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang, China
| | - Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
3
|
Tadawattana P, Kawashima K, Sittiwanichai S, T-Thienprasert J, Mori T, Pongprayoon P. Exploring the Capabilities of Nanosized Graphene Oxide as a Pesticide Nanosorbent: Simulation Studies. ACS OMEGA 2025; 10:8951-8959. [PMID: 40092792 PMCID: PMC11904685 DOI: 10.1021/acsomega.4c06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
The pesticide contamination in the environment has become a global concern. So far, pesticide adsorption from waste solution is one of the most economic strategies for pesticide removal. Carbon-based nanomaterials were reported to be potential pesticide sorbents. To date, nanosized graphene oxide (GO) has been discovered. Its nanosize, which is comparable to pesticide sizes, is attractive enough to explore its performance to be the pesticide sorbent. Thus, herein, the adsorption mechanisms of a single pesticide on GO were studied by comparing 6-pesticide systems. Three types of common pesticides (cyfluthrin (CFT) (pyrethroid), ivermectin (IVM) (avermectin), and diazinon (DZ) (organophosphate)) were used as pesticide models. All pesticides rapidly adhere to GO at the graphene-like region. The π-π and π-alkyl interactions contribute most to pesticide adhesion. The adsorption of CFT and DZ is led by the π-π stacking, whereas bulky IVM uses the π-alkyl forces. Having more pesticides results in self-clustering. Pesticides pile up and avoid lying on the oxygenated area. IVM is the most favorable for GO and shows tight self-packing via dispersion force and hydrogen bonding. Overall, this work displays the encouraging ability of nanosized GO to effectively absorb all pesticides which will benefit future applications in pest control.
Collapse
Affiliation(s)
- Prin Tadawattana
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Kyohei Kawashima
- Institute
for Material Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Sirin Sittiwanichai
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Jiraroj T-Thienprasert
- Department
of Physics, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Toshifumi Mori
- Institute
for Material Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
- Interdisciplinary
Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Senbill H, Gangan A, Saeed AM, Gad ME, Zeb J, Fahmy A. Effects of copper/graphene oxide core-shell nanoparticles on Rhipicephalus ticks and their detoxification enzymes. Sci Rep 2025; 15:3334. [PMID: 39870717 PMCID: PMC11772816 DOI: 10.1038/s41598-025-86560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions. The nanoparticles synthesized at 180 W and 45 min were highly toxic to Rh. rutilus and Rh. turanicus, with 50% lethal concentration (LC50) values of 248.1 and 195.7 mg ml-1, respectively, followed by those which were synthesized at 120 W/30 mins (LC50 = 581.5 and 526.5 mg ml-1), 120 W/15 mins (LC50 = 606.9 and 686.7 mg ml-1), and 100/45 mins (LC50 = 792.9 and 710.7 mg ml-1), after 24 h of application. The enzyme assays revealed that 180 W/45 min treatment significantly inhibited the activity of acetylcholinesterase (115 ± 0.81 and 123 ± 0.33 U/ mg protein/min) and superoxide dismutase (290 ± 0.18 and 310 ± 0.92 U/ mg protein/min) in Rh. rutilus and Rh. turanicus, respectively, as compared with the negative control. The results also revealed a significantly increased catalase activity (895 ± 0.37 and 870 ± 0.31 U/ mg protein/min) in Rh. rutilus and Rh. turanicus, respectively. The above results indicated that Copper/Graphene oxide core-shell nanoparticles could be a promising alternatives for the management of ticks.
Collapse
Affiliation(s)
- Haytham Senbill
- Depaertment of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt.
| | - Amr Gangan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed M Saeed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Jehan Zeb
- Department of Zoology, Higher Education Department, Government Ghazi Umara Khan Degree College Samar bagh, Lower Dir, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Alaa Fahmy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Petrochemicals Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
5
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review. Int J Mol Sci 2024; 25:11798. [PMID: 39519349 PMCID: PMC11547080 DOI: 10.3390/ijms252111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Kirill Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 633501 Krasnoobsk, Russia
- Advanced Engineering School “Agrobiotek”, Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
6
|
Xue Q, Li J, Vereecken S, Li Q, Zhi Z, Dubruel P, Taning CNT, De Schutter K. Functionally Modified Graphene Oxide as an Alternative Nanovehicle for Enhanced dsRNA Delivery in Improving RNAi-Based Insect Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39365919 DOI: 10.1021/acs.jafc.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
RNA interference (RNAi) has shown substantial promise as a sustainable pest management solution. However, the efficacy of RNAi-based insecticides heavily relies on advanced nanocarrier-mediated delivery systems. In this study, we modified raw graphene oxide into positively charged nanocarriers (GONs) tailored to bind with double-stranded RNA (dsRNA). The resulting GONs@dsRNA complexes demonstrated a small particle size (106 nm) and maintained stability under various conditions, including insect gut extracts, extreme pH, and extreme temperature. Furthermore, GONs efficiently transported dsRNA molecules into Drosophila S2 cells and Lepidoptera Sf9 cells, leading to an enhanced target transcript knockdown. Targeting the vacuolar ATPase gene, vha26, induced significant mortality and target transcript knockdown in D. suzukii adults but not in S. exigua. Finally, GONs@dsRNA complexes exhibited negligible cytotoxicity at both the cellular and organismal levels. This study demonstrates the potential of GONs as a biosafe nanovehicle for efficient dsRNA delivery into insects, presenting an alternative strategy for advancing RNAi applications in fundamental studies and pest control.
Collapse
Affiliation(s)
- Qi Xue
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jiangjie Li
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Sven Vereecken
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Clauvis Nji Tizi Taning
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Kristof De Schutter
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
7
|
Wang K, Li JQ, He S, Lu J, Wang D, Wang JX, Chen JF. Redox/Near-Infrared Dual-Responsive Hollow Mesoporous Organosilica Nanoparticles for Pesticide Smart Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18466-18475. [PMID: 38054693 DOI: 10.1021/acs.langmuir.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Extremely inefficient utilization of pesticides has prompted a study of low-cost, sustainable, and smart application systems. Herein, as a promising pesticide nanocarrier, hollow mesoporous organosilica nanoparticles (HMONs) were first synthesized by using inexpensive CaCO3 nanoparticles as the hollow templates. A redox/near-infrared light dual-triggered pesticide release system was further achieved via loading avermectin (AVM) into the HMONs and coating a layer of polydopamine (PDA). The as-prepared AVM@HMONs@PDA displays a favorable pesticide load capability (24.8 wt %), outstanding photothermal performance, and high adhesion to leaves. In addition, with glutathione (GSH), the AVM cumulative release from AVM@HMONs@PDA was 3.5 times higher than that without GSH. Under ultraviolet light irradiation, the half-life of AVM@HMONs@PDA was prolonged by 17.0-fold compared to that of the AVM technical. At day 21 after treatment in the insecticidal activity, the median lethal concentrations (LC50) values displayed that the toxicity of AVM@HMONs@PDA for Panonychus citri (McGregor) was enhanced 4.0-fold compared with the commercial emulsifiable concentrate. In the field trial, at day 28 after spraying, AVM@HMONs@PDA was significantly more control effective than AVM-EC in controlling the P. citri (McGregor), even at a 50% reduced dosage. Moreover, HMONs@PDA was safe for crops. This research presents a novel preparation approach for HMONs, and it also offers a promising nanoplatform for the precise release of pesticides.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia-Qing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jun Lu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Jia T, Pan N, Song X, Gao Y, Zhang Z, Xu H, Zhao C. Preparation and Characterization of Insecticide/Calix[4]arene Complexes and Their Enhanced Insecticidal Activities against Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5576-5584. [PMID: 37014048 DOI: 10.1021/acs.jafc.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Applications of supramolecular materials in plant protection have attracted significant interest in recent years. To develop a feasible method to improve the efficacy and reduce the usage of chemical pesticides, the effect of calix[4]arene (C4A) inclusion on enhancing the insecticidal activity of commercial insecticides was investigated. Results showed that all three tested insecticides (chlorfenapyr, indoxacarb, and abamectin) with distinct molecular sizes and modes of action were able to form stable 1:1 host-guest complexes with C4A through simple preparation steps. The insecticidal activities of the complexes against Plutella xylostella were effectively enhanced compared to the guest molecule, with the synergism ratio being up to 3.05 (for indoxacarb). An obvious correlation was found between the enhanced insecticidal activity and the high binding affinity between insecticide and C4A, while the improvement in water solubility may not be a determining factor. The work would provide hints for the further development of functional supramolecular hosts as synergists in pesticide formulations.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Nianyou Pan
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yongchao Gao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|