1
|
Zhang H, Jin P, Kong Y, Jia C, Qiao P, Dong Y, Zhou Y, Hu J, Yang Z, Jung G. Mutations across Diverse Domains of CjXDR1 Lead to Multidrug Resistance in Clarireedia jacksonii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39352294 DOI: 10.1021/acs.jafc.4c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, Clarireedia jacksonii has emerged as a significant pathogen threatening turfgrass, and its escalating resistance to multiple drugs often undermines field interventions. This study highlighted the critical role of the fungus-specific transcription factor CjXDR1 (formerly ShXDR1) in regulating multidrug resistance (MDR) in C. jacksonii. This was demonstrated through experiments involving CjXDR1-knockout and CjXDR1-complemented strains. Our sequence analysis revealed five mutations in CjXDR1: G445D, K453E, S607F, D676H, and V690A. All five gain-of-function (GOF) mutations were confirmed to directly contribute to MDR against three different classes of fungicides (propiconazole: demethylation inhibitor, boscalid: succinate dehydrogenase inhibitor, and iprodione: dicarboximide) using the genetic transformation system and in vitro fungicide-sensitivity assay. Comparative transcriptome analysis revealed that CjXDR1 and its GOF mutations led to the overexpression of downstream genes encoding a Phase I metabolizing enzyme (CYP68) and two Phase III transporters (CjPDR1 and CjAtrD) previously reported. Knockout mutants of CYP68, CjPDR1, CjAtrD, and double-knockout mutants of CjPDR1 and CjAtrD exhibited increased sensitivity to all three fungicides tested. Among these, the CYP68-knockout mutants displayed the highest sensitivity to propiconazole, while the CjPDR1 knockout mutant exhibited significantly increased sensitivity to all three fungicides. Double-knockout mutants of CjPDR1 and CjAtrD displayed greater sensitivity than the single knockouts. In conclusion, multiple GOF mutants in CjXDR1 contribute to MDR by upregulating the expression of CjPDR1, CjAtrD, and CYP68. This study enhances our understanding of the molecular mechanisms underlying MDR in plant pathogenic fungi, providing valuable insights into GOF mutation structures and advancing the development of antifungal drugs.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peiyuan Jin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Kong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenchen Jia
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Qiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210095, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Hu J, Zhang H, Kong Y, Lamour K, Jung G, Yang Z. Varied sensitivity to boscalid among different Clarireedia species causing dollar spot in turfgrass. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106029. [PMID: 39277357 DOI: 10.1016/j.pestbp.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/17/2024]
Abstract
Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus Clarireedia. Previous research indicated varying sensitivity to boscalid among Clarireedia populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different Clarireedia spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different Clarireedia spp.
Collapse
Affiliation(s)
- Jian Hu
- College of Agro-grassland Science, Nanjing Agircultural University, Nanjing, Jiangsu 210095, PR China
| | - Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agircultural University, Nanjing, Jiangsu 210095, PR China
| | - Yixuan Kong
- College of Agro-grassland Science, Nanjing Agircultural University, Nanjing, Jiangsu 210095, PR China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agircultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Wang J, Li X, Sun X, Huo X, Li M, Han C, Liu A. Establishment and Application of a Multiplex PCR Assay for Detection of Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum in Peanut. Mol Biotechnol 2023:10.1007/s12033-022-00647-1. [PMID: 36607498 DOI: 10.1007/s12033-022-00647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Southern blight, stem rot, and root rot are serious soil-borne fungal diseases of peanut, which are caused by Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum, respectively. These diseases are difficult to be diagnosed in early stage of infection, causing the optimal treatment period was often missed. Therefore, establishing a rapid detection system is of great significance for early prevention of peanut soil-borne fungal diseases. Here, we have invented a multiplex PCR detection system to detect fungal pathogens of peanut southern blight, stem rot, and root rot at the same time. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 1005-bp (F. oxysporum), 238-bp (L. theobromae), and 638-bp (S. rolfsii). The detection limit for the single and multiplex PCR primer sets was 1 ng of template DNA under in vitro conditions. Amplification of fungi of non-target species yielded no non-specific products. The validation showed that the multiplex PCR could effectively detect single and mixed infections in field samples. Overview, this study proved that this mPCR assay was a rapid, reliable, and simple tool for the simultaneous detection of three important peanut soil-borne diseases, which facilitated prompt treatment and prevention of peanut root diseases.
Collapse
Affiliation(s)
- Jin Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueying Sun
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuelin Huo
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Meiqi Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|