1
|
Wang P, Zhao Y, Cheng Y, Tian S, Bai Y, Zuo J, Palli SR, Chen X. Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2025; 81:2355-2363. [PMID: 39764585 DOI: 10.1002/ps.8634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found. RESULTS Quantitative PCR analysis validated the testis-specific expression of genes within this cluster across different developmental stages. Interspecies collinearity analysis indicated that this TSGC is conserved among lepidopterans. To elucidate the function of this TSGC, we employed the CRISPR/Cas9 gene-editing technique to generate loss-of-function mutants. Notably, the hatching rate of eggs produced by wild-type females mated with mutant males (approximately 30%) was substantially lower than that of eggs from wild-type females mated with wild-type males (approximately 80%). Additionally, a significant reduction in the size and number of sperm was observed in the testis of mutant males compared to wild-type males. CONCLUSION Collectively, this study not only elucidates the role of the TSGC in supporting male fertility in the FAW, which provides valuable information for understanding the mechanism of male reproduction in insects, but also identifies potential target genes for the development of genetic control strategies against lepidopteran pests. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuchen Zhao
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yalan Cheng
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Siyu Tian
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuxuan Bai
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Junfeng Zuo
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, USA
| | - Xien Chen
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, USA
| |
Collapse
|
2
|
Wei Z, Wang Y, Zheng K, Wang Z, Liu R, Wang P, Li Y, Gao P, Akbari OS, Yang X. Loss-of-function in testis-specific serine/threonine protein kinase triggers male infertility in an invasive moth. Commun Biol 2024; 7:1256. [PMID: 39363033 PMCID: PMC11450154 DOI: 10.1038/s42003-024-06961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species. We further generated male moths with disrupted the expression of TSSKs and those with TSSKs disrupted using RNA interference and CRISPR/Cas9 genetic editing techniques, resulting in significant disruptions in spermiogenesis, decreased sperm motility, and hindered development of eggs. Further explorations into the underlying post-transcriptional regulatory mechanisms reveales the involvement of lnc117962 as a competing endogenous RNA (ceRNA) for miR-3960, thereby regulating TSSKs. Notably, orchard trials demonstrates that the release of male strains can effectively suppress population growth. Our findings indicate that targeting TSSKs could serve as a feasible avenue for managing C. pomonella populations, offering significant insights and potential strategies for controlling invasive pests through genetic sterile insect technique (gSIT) technology.
Collapse
Affiliation(s)
- Zihan Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yaqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Kangwu Zheng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
| | - Ronghua Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Pengcheng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yuting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
3
|
Asad M, Liao J, Chen J, Munir F, Pang S, Abbas AN, Yang G. Exploring the role of the ovary-serine protease gene in the female fertility of the diamondback moth using CRISPR/Cas9. PEST MANAGEMENT SCIENCE 2024; 80:3194-3206. [PMID: 38348909 DOI: 10.1002/ps.8022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/11/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Oogenesis is a complex pathway necessary for proper female reproduction in insects. Ovary-serine protease (Osp) is a homologous gene of serine protease Nudel (SpNudel) and plays an essential role in the oogenesis and ovary development of Drosophila melanogaster. However, the function of Osp is not determined in Plutella xylostella, a highly destructive pest of cruciferous crops. RESULTS The PxOsp gene comprises a 5883-bp open-reading frame that encodes a protein consisting of 1994 amino acids, which contain four conserved domains. PxOsp exhibited a high relative expression in adult females with a specific expression in the ovary. Through the utilization of CRISPR/Cas9 technology, homozygous mutants of PxOsp were generated. These homozygous mutant females produced fewer eggs (average of 56 eggs/female) than wild-type (WT) females (average of 97 eggs/female) when crossed with WT males, and these eggs failed to hatch. Conversely, mutant males produced normal progeny when crossed with WT females. The ovarioles in homozygous mutant females were significantly shorter (5.02 mm in length) and contained fewer eggs (average of 3 eggs/ovariole) than WT ovarioles (8.09 mm in length with an average of 8 eggs/ovariole). Moreover, eggs laid by homozygous mutant females were fragile, with irregular shapes, and were unable to maintain structural integrity due to eggshell ruptures. However, no significant differences were observed between WT and mutant individuals regarding developmental duration, pupal weight, and mating behavior. CONCLUSION Our study suggesteds that PxOsp plays a vital role in female reproduction, particularly in ovary and egg development. Disrupting PxOsp results in recessive female sterility while leaving the male reproductive capability unaffected. This report represents the first study of a haplosufficient gene responsible for female fertility in lepidopteran insects. Additionally, these findings emphasize PxOsp as a potential target for genetically-based pest management of P. xylostella. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jianying Liao
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Faisal Munir
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Anam Noreen Abbas
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
4
|
Han HL, Li JM, Chen D, Zhai XD, Smagghe G, Jiang H, Wang JJ, Wei D. Overexpression of miR-927-5p suppresses stalky expression and negatively reduces the spermatid production in Zeugodacus cucurbitae. PEST MANAGEMENT SCIENCE 2024; 80:3412-3422. [PMID: 38407521 DOI: 10.1002/ps.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The melon fly, Zeugodacus cucurbitae Coquillett, is one of the major pests attacking Cucurbitaceae crops. Identifying critical genes or proteins regulating fertility is essential for sustainable pest control and a research hotspot in insect physiology. MicroRNAs (miRNAs) are short RNAs that do not directly participate in protein translation, but instead function in post-transcriptional regulation of gene expression involved in male fertility. RESULTS We found that miR-927-5p is highly expressed in the testes and investigated its function in spermatogenesis in Z. cucurbitae. Fluorescence in situ hybridization (FISH) showed miR-927-5p in the transformation and maturation region of the testis, and overexpression of miR-927-5p reduced the number of sperms by 53%. In continuation, we predicted 12 target genes of miR-927-5p using bioinformatics combined with transcriptome sequencing data, and found that miR-927-5p targets the new gene Stalky in insects, which was validated by quantitative real-time PCR, RNA pull-down and dual luciferase reporter assays. FISH also confirmed the co-localization of miR-927-5p and the transcript Stalky_1 in the testis. Moreover, silencing of Stalky_1 by RNA interference reduced the number of sperms by 32% and reduced sperm viability by 39% in physiologically mature male adults. Meanwhile, the silencing of Stalky_1 also resulted in low hatchability. CONCLUSION Our work not only presents a new, so far unreported mechanism regulating spermatogenesis by miR-927-5p targeting a new unknown target, Stalky, which is providing new knowledge on the regulatory network of insect spermatogenesis, but also lays a foundation for the development of SIT against important tephritid fly pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jing-Ming Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhai XD, Wang SH, Ma M, Pan D, Wang JJ, Wei D. Suppressing the expression of glutathione S-transferase gene GSTd10 increases the sensitivity of Zeugodacus cucurbitae against β-cypermethrin. INSECT MOLECULAR BIOLOGY 2024; 33:218-227. [PMID: 38319237 DOI: 10.1111/imb.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to β-cypermethrin. Glutathione S-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both ZcGSTd6 and ZcGSTd10 were up-regulated by β-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with β-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in Escherichia coli showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver-Burk. The Vmax and Km of ZcGSTd6 were 0.50 μmol/min·mg and 0.3 mM, respectively. The Vmax and Km of ZcGSTd10 were 1.82 μmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that β-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to β-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of ZcGSTd6 and ZcGSTd10 by using RNA interference. In addition, the inhibition of CDNB at 50% (IC50) and the inhibition constants (Ki) of β-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The Ki and IC50 of β-cypermethrin against ZcSGTd6 were not analysed. These results suggested that ZcGSTd10 could be an essential regulator involved in the tolerance of Z. cucurbitae to β-cypermethrin.
Collapse
Affiliation(s)
- Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Shi-Heng Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Meng Ma
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Deng Pan
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
6
|
Anu CN, Ashok K, Bhargava CN, Dhawane Y, Manamohan M, Jha GK, Asokan R. CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22121. [PMID: 38783691 DOI: 10.1002/arch.22121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.
Collapse
Affiliation(s)
- Cholenahalli Narayanappa Anu
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Karuppannasamy Ashok
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Tata Institute for Genetics and Society, Bengaluru, Karnataka, India
| | - Chikmagalur Nagaraja Bhargava
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Yogi Dhawane
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Maligeppagol Manamohan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Grish Kumar Jha
- Division of Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ramasamy Asokan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Tan SY, Liu CL, Han HL, Zhai XD, Jiang H, Wang BJ, Wang JJ, Wei D. Two heat shock cognate 70 genes involved in spermatogenesis regulate the male fertility of Zeugodacus cucurbitae, as potential targets for pest control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105816. [PMID: 38582574 DOI: 10.1016/j.pestbp.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 04/08/2024]
Abstract
The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.
Collapse
Affiliation(s)
- Shan-Yuan Tan
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Chuan-Lian Liu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Bao-Jun Wang
- Chongqing Agricultural Technology Extension Station, Chongqing 401121, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang 550005, China.
| |
Collapse
|