1
|
Ali S, Mishra AK, Singh M, Almalki M, Friedan M, Khalifa A, Chellappan BV, Mahmoudi H, Tyagi A, Mir ZA. Genome-wide identification and characterization of pathogenesis related protein 1 gene family in Brassica juncea. Int J Biol Macromol 2025; 312:144066. [PMID: 40354859 DOI: 10.1016/j.ijbiomac.2025.144066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Pathogenesis related protein 1 (PR1) family are key players of plant defence response against pathogens, however, their role in Brassica juncea is not fully understood. Here, we performed genome wide identification and characterization of PR1 gene family in B. juncea. A total of 43 members of BjuPR1 gene family were identified in mustard genome, designated as BjuPR1-1 to BjuPR1-43. Based on phylogenetic analysis, Bju-PR1 proteins were grouped into five primary clusters (I-V) according to their conserved motifs and gene structures. The BjuPR1 genes consist of 1 to 5 coding exons, and a total of 10 conserved motifs have been identified, with motif 2 appearing in nearly all PR1 proteins. Domain analysis revealed that CAP domain is highly conserved across BjuPR1 proteins along with caveolin-binding motif (CMD), and CAPE cleavage motif. Chromosomal mapping showed that 43 BjuPR1 genes were distributed on 13 of the 18 mustard chromosomes. Promoter analysis of BjuPR1 gene family showed multiple growth, hormone-responsive, biotic and abiotic stress-responsive elements. Expression analysis showed distinct expression pattern of BjuPR1 after biotic, abiotic and hormonal treatments. This study provides comprehensive information on PR1 gene family in B. juncea which can be further used for their functional validation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Mahendra Singh
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Mohammad Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammad Friedan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ashraf Khalifa
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | | | - Henda Mahmoudi
- Directorate of Programs, International Centre for Biosaline Agriculture, Dubai, 14660, United Arab Emirates.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Zahoor A Mir
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
2
|
Li Z, Zhang L, Ye X, Huang Y, Ji Y, Li Y, Wall D, Cui Z. Myxobacteria: Versatile cell factories of novel commercial enzymes for bio-manufacturing. Biotechnol Adv 2025; 82:108594. [PMID: 40345460 DOI: 10.1016/j.biotechadv.2025.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Microbial cell factories for the production of high-quality commercial-grade enzymes have accelerated the development of advanced bio-manufacturing approaches, which in turn are environmentally friendly and sustainable. Myxobacteria, a term commonly used to refer to a group within the Myxococcota phylum, are of great interest for their biotechnological applications due to their ability to synthesize a wide range of natural products and lytic enzymes. These traits are essential for the development of robust expression systems. However, myxobacteria have remained an underexploited resource with industrial relevance. Nevertheless, a growing number of food and industrial enzymes have been identified, highlighting myxobacteria as suitable platforms for exploring enzymes with commercial applications, including biomass conversion. Yet, the discovered lytic enzymes are just the tip of the iceberg given their large genomes and diversity across myxobacteria taxa. Despite holding much promise, challenges in genetic engineering, slow growth, and limitations in metabolic remodeling and expression strategies have limited the construction of myxobacterial cell factories. In this review, we highlight recent advances in the discovery of new myxobacterial enzymes and biomass conversion resources, focusing on their potential applications in agriculture and industry. We describe how myxobacteria and their enzymes can be identified through bioprospecting and computational approaches and summarize current biotechnological applications and synthetic biology strategies for bio-manufacturing. Finally, we discuss the promising potential of myxobacteria as industrial cell factories and address open research questions and future directions.
Collapse
Affiliation(s)
- Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Li DQ, Liu XL, Yuan M, Sun W, Zhou JM, Wang WM, Fan J. Understanding and enhancing rice resistance to false smut disease. J Genet Genomics 2025:S1673-8527(25)00087-6. [PMID: 40204126 DOI: 10.1016/j.jgg.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Flower-infecting fungi have caused many economically important diseases in crop production. The fungal pathogen Ustilaginoidea virens infects developing rice florets, causing false smut disease, which leads to reduced grain yield and quality, as well as contamination with mycotoxins that pose hazards to human health and food security. To ensure rice production, substantial efforts have been made on understanding the interaction between rice and U. virens. In this review, we summarize the current understanding of rice resistance mechanisms to U. virens. We discuss the evaluation of false smut resistance, quantitative resistance loci, potential defense strategies of rice panicles, pathogen effector-driven identification of resistance-related genes, and engineering of false smut resistance. We conclude by proposing an integrated defense system that includes disease avoidance, immune response, metabolic adaptation, and the inhibition of susceptibility factors. Furthermore, we outline four critical stages of interaction between rice and U. virens that are essential for understanding and enhancing organ-specific rice resistance to false smut disease.
Collapse
Affiliation(s)
- De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Meng Yuan
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jian-Min Zhou
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| |
Collapse
|
4
|
Manzoor S, Nabi SU, Rather TR, Gani G, Mir ZA, Wani AW, Ali S, Tyagi A, Manzar N. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Front Genome Ed 2024; 6:1399051. [PMID: 38988891 PMCID: PMC11234172 DOI: 10.3389/fgeed.2024.1399051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, India
| | | | - Gousia Gani
- Division of Basic Science and Humanities, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| | - Ab Waheed Wani
- Department of Horticulture, LPU, Jalander, Punjab, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
5
|
Han J, Dong Z, Ji W, Lv W, Luo M, Fu B. From predator to protector: Myxococcus fulvus WCH05 emerges as a potent biocontrol agent for fire blight. Front Microbiol 2024; 15:1378288. [PMID: 38650871 PMCID: PMC11033317 DOI: 10.3389/fmicb.2024.1378288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Fire blight, caused by the Gram-negative bacterium Erwinia amylovora, poses a substantial threat to pome fruit production worldwide. Despite existing control strategies, a pressing need remains for sustainable and environmentally friendly fire blight management. Myxobacteria, renowned for their predatory behavior and potent enzymes, emerge as a groundbreaking biocontrol approach with significant potential. Here, we report the biocontrol potential of a novel Myxococcus fulvus WCH05, against E. amylovora. Using various in vitro and planta assays, we demonstrated the multifaceted biocontrol abilities of strain WCH05. In plate predation assays, strain WCH05 exhibited not only strong predation against E. amylovora but also broad-spectrum activities against other plant pathogenic bacteria. Pre-treatment with strain WCH05 significantly decreased pear blossom blight incidence in detached inflorescence assays, achieving a controlled efficacy of 76.02% that rivaled the antibiotic streptomycin (79.79%). In greenhouse trials, strain WCH05 effectively reduced the wilting rate and disease index in young pear seedlings, exhibiting both protective (73.68%) and curative (68.66%) control. Further investigation revealed that the biocontrol activity of strain WCH05 relies on both direct contact and extracellular enzyme secretion. While cell extracts lacked inhibitory activity, ammonium sulfate-precipitated secreted proteins displayed potent lytic activity against E. amylovora. Substrate spectrum analysis identified peptidases, lipases, and glycosidases among the secreted enzymes, suggesting their potential roles in pathogen degradation and biocontrol efficacy. This study presents the first evidence of Myxococcus fulvus WCH05 as a biocontrol agent against fire blight. Its potent predatory abilities and enzymatic arsenal highlight its potential for sustainable disease management in pome fruit production. Future research will focus on identifying and characterizing specific lytic enzymes and optimizing strain WCH05 application strategies for field efficacy.
Collapse
Affiliation(s)
- Jian Han
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Zhiming Dong
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wenbo Ji
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wen Lv
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Ming Luo
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Benzhong Fu
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| |
Collapse
|
6
|
Zhang L, Bao L, Li S, Liu Y, Liu H. Corrigendum: Active substances of myxobacteria against plant diseases and their action mechanisms. Front Microbiol 2024; 15:1392109. [PMID: 38544866 PMCID: PMC10971235 DOI: 10.3389/fmicb.2024.1392109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1294854.].
Collapse
Affiliation(s)
- Lele Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Liangliang Bao
- College of Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Songyuan Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Zhang L, Bao L, Li S, Liu Y, Liu H. Active substances of myxobacteria against plant diseases and their action mechanisms. Front Microbiol 2024; 14:1294854. [PMID: 38260911 PMCID: PMC10800785 DOI: 10.3389/fmicb.2023.1294854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Myxobacteria have a complex life cycle and unique social behavior, and obtain nutrients by preying on bacteria and fungi in soil. Chitinase, β-1,3 glucanase and β-1,6 glucanase produced by myxobacteria can degrade the glycosidic bond of cell wall of some plant pathogenic fungi, resulting in a perforated structure in the cell wall. In addition, isooctanol produced by myxobacteria can lead to the accumulation of intracellular reactive oxygen species in some pathogenic fungi and induce cell apoptosis. Myxobacteria can also perforate the cell wall of some plant pathogenic oomycetes by β-1,3 glucanase, reduce the content of intracellular soluble protein and protective enzyme activity, affect the permeability of oomycete cell membrane, and aggravate the oxidative damage of pathogen cells. Small molecule compounds such as diisobutyl phthalate and myxovirescin produced by myxobacteria can inhibit the formation of biofilm and lipoprotein of bacteria, and cystobactamids can inhibit the activity of DNA gyrase, thus changing the permeability of bacterial cell membrane. Myxobacteria, as a new natural compound resource bank, can control plant pathogenic fungi, oomycetes and bacteria by producing carbohydrate active enzymes and small molecular compounds, so it has great potential in plant disease control.
Collapse
Affiliation(s)
- Lele Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Liangliang Bao
- College of Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Songyuan Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Huang Q, Chen C, Wu X, Qin Y, Tan X, Zhang D, Liu Y, Li W, Chen Y. Overexpression of ATP Synthase Subunit Beta (Atp2) Confers Enhanced Blast Disease Resistance in Transgenic Rice. J Fungi (Basel) 2023; 10:5. [PMID: 38276021 PMCID: PMC10820023 DOI: 10.3390/jof10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Previous research has shown that the pathogenicity and appressorium development of Magnaporthe oryzae can be inhibited by the ATP synthase subunit beta (Atp2) present in the photosynthetic bacterium Rhodopseudomonas palustris. In the present study, transgenic plants overexpressing the ATP2 gene were generated via genetic transformation in the Zhonghua11 (ZH11) genetic background. We compared the blast resistance and immune response of ATP2-overexpressing lines and wild-type plants. The expression of the Atp2 protein and the physiology, biochemistry, and growth traits of the mutant plants were also examined. The results showed that, compared with the wild-type plant ZH11, transgenic rice plants heterologously expressing ATP2 had no significant defects in agronomic traits, but the disease lesions caused by the rice blast fungus were significantly reduced. When infected by the rice blast fungus, the transgenic rice plants exhibited stronger antioxidant enzyme activity and a greater ratio of chlorophyll a to chlorophyll b. Furthermore, the immune response was triggered stronger in transgenic rice, especially the increase in reactive oxygen species (ROS), was more strongly triggered in plants. In summary, the expression of ATP2 as an antifungal protein in rice could improve the ability of rice to resist rice blast.
Collapse
Affiliation(s)
- Qiang Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Chunyan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xiyang Wu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yingfei Qin
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yong Liu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
| | - Yue Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| |
Collapse
|
9
|
Choubey VK, Sakure AA, Kumar S, Vaja MB, Mistry JG, Patel DA. Proteomics profiling and in silico analysis of peptides identified during Fusarium oxysporum infection in castor (Ricinus communis). PHYTOCHEMISTRY 2023:113776. [PMID: 37393971 DOI: 10.1016/j.phytochem.2023.113776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Castor is industrially important non-edible oil seeds crop severely affected by soil borne pathogen Fusarium oxysporum f. sp. ricini which causes heavy economic losses among the castor growing states in India and worldwide. The development of Fusarium wilt resistant varieties in castor is also challenging because the genes identified for resistance are recessive in nature. Unlike transcriptomics and genomics, proteomics is always a method of choice for quick identification of novel proteins expressed during biological events. Therefore, comparative proteomic approach was employed for identification of proteins released in resistant genotype during Fusarium infection. Protein was extracted from inoculated 48-1 resistant and JI-35 susceptible genotype and subjected to 2D-gel electrophoresis coupled with RPLC-MS/MS. This analysis resulted in 18 unique peptides in resistant genotype and 8 unique peptides in susceptible genotype were identified through MASCOT search database. The real time expression study showed that 5 genes namely CCR 1, Germin like protein 5-1, RPP8, Laccase 4 and Chitinase like 6 was found highly up-regulated during Fusarium oxysporum infection. Furthermore, end point PCR analysis of c-DNA showed amplification of three genes namely Chitinase 6 like, RPP8 and β-glucanase exclusively in resistant genotype indicating that these genes may be involved in resistance phenomenon in castor. Up-regulation of CCR-1 and Laccase 4 involved in lignin biosynthesis provides mechanical strength and may help to prevent the entry of fungal mycelia and protein Germin like 5-1 helps to neutralized ROS by SOD activity. The clear role of these genes can be further confirmed through functional genomics for castor improvement and also for development of transgenic in different crops for wilt resistance.
Collapse
Affiliation(s)
- Vikash Kumar Choubey
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Amar A Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India.
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Mahesh B Vaja
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Jigar G Mistry
- Department of Genetics & Plant Breeding, BACA, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - D A Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|