1
|
Zhang L, Ni R, Chen J, Yang J, Dong Y, Yuchi Z, Tan Y. Molecular Detection of kdr and superkdr Mutation Sites and Analysis of the Binding Modes of Pyrethroid Insecticides with Voltage-Gated Sodium Channels in the Plant Bug Lygus pratensis (Hemiptera: Miridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27451-27465. [PMID: 39225681 DOI: 10.1021/acs.jafc.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study identified genetic mutations linked to resistance to pyrethroid insecticides in the plant pest Lygus pratensis. The voltage-gated sodium channel (VGSC) gene was cloned, revealing two mutations (Met918Thr and Leu1014Phe) in laboratory strains and field populations from Inner Mongolia, resulting in variable pyrethroid resistance. A 3D model of LpVGSC was created using homology modeling, and pyrethroid binding patterns were analyzed via molecular docking. Molecular dynamics simulations confirmed structural stability changes and binding stability of pyrethroids to VGSC sites. Mutation frequencies of homozygous and heterozygous genotypes did not exceed 40 and 20%, respectively. Toxicity tests showed high resistance to λ-cyhalothrin (LC50:401.31 ng/cm2). The kdr (L1014F) and superkdr (M918T) mutations weakened interaction forces, reducing pyrethroid binding. M918T and L1014F mutations are predicted to reduce Type I pyrethroid affinity, suggesting Type II pyrethroids may be more effective against resistant strains. These findings aid in resistance management and insecticide design.
Collapse
Affiliation(s)
- Liqi Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100083, China
| | - Jing Chen
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Jiale Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Yawen Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
2
|
Cook S, Jędryczka M. Integrated pest control in oilseed crops-new advances from the rapeseed research community. PEST MANAGEMENT SCIENCE 2024; 80:2217-2219. [PMID: 38523470 DOI: 10.1002/ps.8078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
|