1
|
Hirulkar R, Chaurawal N, Alhodieb FS, Barkat H, Preet S, Raza K. Nanotheranostics: Clinical Status, Toxicity, Regulatory Consideration, and Future Prospects. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:249-285. [DOI: 10.1007/978-981-97-3115-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Rawding PA, Bu J, Wang J, Kim D, Drelich AJ, Kim Y, Hong S. Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1752. [PMID: 34414690 PMCID: PMC9485970 DOI: 10.1002/wnan.1752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy, or the utilization of a patient's own immune system to treat cancer, has shifted the paradigm of cancer treatment. Despite meaningful responses being observed in multiple studies, currently available immunotherapy platforms have only proven effective to a small subset of patients. To address this, nanoparticles have been utilized as a novel carrier for immunotherapeutic drugs, achieving robust anti-tumor effects with increased adaptive and durable responses. Specifically, dendrimer nanoparticles have attracted a great deal of scientific interest due to their versatility in various therapeutic applications, resulting from their unique physicochemical properties and chemically well-defined architecture. This review offers a comprehensive overview of dendrimer-based immunotherapy technologies, including their formulations, biological functionalities, and therapeutic applications. Common formulations include: (1) modulators of cytokine secretion of immune cells (adjuvants); (2) facilitators of the recognition of tumorous antigens (vaccines); (3) stimulators of immune effectors to selectively attack cells expressing specific antigens (antibodies); and (4) inhibitors of immune-suppressive responses (immune checkpoint inhibitors). On-going works and prospects of dendrimer-based immunotherapies are also discussed. Overall, this review provides a critical overview on rapidly growing dendrimer-based immunotherapy technologies and serves as a guideline for researchers and clinicians who are interested in this field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Piper A Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adam J Drelich
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Youngsoo Kim
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
6
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Agrahari AK, Singh AS, Singh AK, Mishra N, Singh M, Prakash P, Tiwari VK. Click inspired synthesis of hexa and octadecavalent peripheral galactosylated glycodendrimers and their possible therapeutic applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj02564b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click inspired glycodendrimers comprising a rigid hexapropargyloxy benzene core with peripheral β-d-galactopyranosidic units were developed and evaluated for their therapeutic potential.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ashish Kumar Singh
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Nidhi Mishra
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Mala Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Pradyot Prakash
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
8
|
Nagao M, Fujiwara Y, Matsubara T, Hoshino Y, Sato T, Miura Y. Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules 2017; 18:4385-4392. [DOI: 10.1021/acs.biomac.7b01426] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masanori Nagao
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yurina Fujiwara
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Teruhiko Matsubara
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Santos S, Gonzaga R, Silva J, Savino D, Prieto D, Shikay J, Silva R, Paulo L, Ferreira E, Giarolla J. Peptide dendrimers: drug/gene delivery and other approaches. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendrimers are versatile hyperbranched molecules, which have deserved attention especially for their potential in many applications, including biological. Peptide dendrimers comprise interesting classes of dendrimers, and their use has been emphasized as a drug/bioactive compound delivery system, mostly in the antineoplastic area. The bioactive molecules can be covalently linked or entrapped inside the peptide derivative. Self-assembled nanocarriers are a recent trend in the design of potential delivery systems, and pH-sensitive carriers, one of their methods, have been designed to control their systems. In addition, the use of targeting peptides or other specific groups that direct the drug/bioactive compounds to specific organs is an important trend in the search for better drug delivery systems. Recent examples have been given in the literature, showing that gene delivery as another important peptide dendrimer application. It is worth emphasizing that some peptide dendrimers show activity per se, without bioactive compounds. Immune compounds and vaccines are presented herein, as well as uses of other peptide dendrimers are briefly discussed in this review, which encompasses around 10 years of work.
Collapse
Affiliation(s)
- S.S. Santos
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - R.V. Gonzaga
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J.V. Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - D.F. Savino
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - D. Prieto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J.M. Shikay
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - R.S. Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - L.H.A. Paulo
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - E.I. Ferreira
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| | - J. Giarolla
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
10
|
Ganneau C, Simenel C, Emptas E, Courtiol T, Coïc YM, Artaud C, Dériaud E, Bonhomme F, Delepierre M, Leclerc C, Lo-Man R, Bay S. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org Biomol Chem 2017; 15:114-123. [DOI: 10.1039/c6ob01931e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A complex glycopeptide was obtained in multigram as a fully synthetic anti-cancer vaccine for human use.
Collapse
|
11
|
Pyziak MA, Bartkowiak G, Popenda Ł, Jurga S, Schroeder G. Synthesis of G0 aminopolyol and aminosugar dendrimers, controlled by NMR and MALDI TOF mass spectrometry. Des Monomers Polym 2016; 20:144-156. [PMID: 29491788 PMCID: PMC5812123 DOI: 10.1080/15685551.2016.1231048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/29/2016] [Indexed: 01/24/2023] Open
Abstract
Organic compounds designed to serve as stable dendrimer cores were developed. A series of aminosugar and amino polyol containing G0 dendrimers were synthesized. The reaction mixture composition was checked by MALDI TOF mass spectrometry, while that of purified products – by 1H and 13C NMR combined with 2D NMR spectroscopy as well as MALDI TOF MSMS mass spectra. Mass spectrometric fragmentation experiments were performed in positive ion mode in order to determine common fragmentation patterns of [M+H]+ ions.
Collapse
Affiliation(s)
- Mikołaj A Pyziak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grażyna Bartkowiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland.,NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland.,Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
12
|
Hsu H, Bugno J, Lee S, Hong S. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1409] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Jui Hsu
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seung‐ri Lee
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
- Department of Integrated OMICs for Biomedical Science and Underwood International CollegeYonsei UniversitySeoulKorea
| |
Collapse
|
13
|
Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:490531. [PMID: 26509158 PMCID: PMC4609776 DOI: 10.1155/2015/490531] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/13/2022]
Abstract
Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.
Collapse
|
14
|
Sk UH, Kojima C. Dendrimers for theranostic applications. Biomol Concepts 2015; 6:205-217. [PMID: 26136305 DOI: 10.1515/bmc-2015-0012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2025] Open
Abstract
Recently, there have been tremendous advances in the development of various nanotechnology-based platforms for diagnosis and therapy. These nanoplatforms, which include liposomes, micelles, polymers, and dendrimers, comprise highly integrated nanoparticles that provide multiple functions, such as targeting, imaging, and therapy. This review focuses on dendrimer-based nanocarriers that have recently been developed for 'theranostics (or theragnosis)', a combination of therapy and diagnostics. We discuss the in vitro and in vivo applications of these nanocarriers in strategies against diseases including cancer. We also explore the use of dendrimers as imaging agents for fluorescence imaging, magnetic resonance imaging, X-ray computed tomography, and nuclear medical imaging.
Collapse
|
15
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
16
|
Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014; 2:105. [PMID: 25505783 PMCID: PMC4244808 DOI: 10.3389/fchem.2014.00105] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
Collapse
Affiliation(s)
- João Conniot
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana M Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana G Fernandes
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Liana C Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Rogério Gaspar
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Steve Brocchini
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| | - Helena F Florindo
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Teresa S Barata
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| |
Collapse
|
17
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
18
|
Carrascal MA, Severino PF, Guadalupe Cabral M, Silva M, Ferreira JA, Calais F, Quinto H, Pen C, Ligeiro D, Santos LL, Dall'Olio F, Videira PA. Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 2014; 8:753-65. [PMID: 24656965 DOI: 10.1016/j.molonc.2014.02.008] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/15/2022] Open
Abstract
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn(+) bladder cancer cells, had an immature phenotype (MHC-II(low), CD80(low) and CD86(low)) and were unresponsive to further maturation stimuli. When contacting with STn(+) cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn(+) cancer cells were not activated and showed a FoxP3(high) IFN-γ(low) phenotype. Blockade of STn antigens and of STn(+) glycoprotein, CD44 and MUC1, in STn(+) cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn(+) glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Collapse
Affiliation(s)
- Mylène A Carrascal
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo F Severino
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M Guadalupe Cabral
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana Silva
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Alexandre Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Fernando Calais
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Hermínia Quinto
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Dário Ligeiro
- Centro de Histocompatibilidade do Sul, Lisboa, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Fabio Dall'Olio
- Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paula A Videira
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 2013; 65:1204-14. [PMID: 23602906 DOI: 10.1016/j.addr.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022]
Abstract
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
20
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 854] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang KR, Wang YQ, An HW, Zhang JC, Li XL. A Triazatruxene-Based Glycocluster as a Fluorescent Sensor for Concanavalin A. Chemistry 2013; 19:2903-9. [DOI: 10.1002/chem.201200905] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 11/02/2012] [Indexed: 01/06/2023]
|
22
|
Wang KR, An HW, Wang YQ, Zhang JC, Li XL. Multivalent glycoclusters constructed by chiral self-assembly of mannose functionalized perylene bisimide. Org Biomol Chem 2013; 11:1007-12. [DOI: 10.1039/c2ob27052h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Synthesis of perylene bisimide-centered glycodendrimer and its interactions with concanavalin A. Bioorg Med Chem Lett 2013; 23:480-3. [DOI: 10.1016/j.bmcl.2012.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022]
|
24
|
Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2012; 2:435-66. [PMID: 24970145 PMCID: PMC4030860 DOI: 10.3390/biom2040435] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022] Open
Abstract
Sialyl-Tn antigen (STn) is a short O-glycan containing a sialic acid residue α2,6-linked to GalNAcα-O-Ser/Thr. The biosynthesis of STn is mediated by a specific sialyltransferase termed ST6GalNAc I, which competes with O-glycans elongating glycosyltransferases and prevents cancer cells from exhibiting longer O-glycans. While weakly expressed by fetal and normal adult tissues, STn is expressed by more than 80% of human carcinomas and in all cases, STn detection is associated with adverse outcome and decreased overall survival for the patients. Because of its pan-carcinoma expression associated with an adverse outcome, an anti-cancer vaccine, named Theratope, has been designed towards the STn epitope. In spite of the great enthusiasm around this immunotherapy, Theratope failed on Phase III clinical trial. However, in lieu of missing this target, one should consider to revise the Theratope design and the actual facts. In this review, we highlight the many lessons that can be learned from this failure from the immunological standpoint, as well as from the drug design and formulation and patient selection. Moreover, an irrefutable knowledge is arising from novel immunotherapies targeting other carbohydrate antigens and STn carrier proteins, such as MUC1, that will warrantee the future development of more successful anti-STn immunotherapy strategies.
Collapse
Affiliation(s)
- Sylvain Julien
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| | - Paula A Videira
- CEDOC, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
25
|
Brinãs RP, Sundgren A, Sahoo P, Morey S, Rittenhouse-Olson K, Wilding GE, Deng W, Barchi JJ. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjug Chem 2012; 23:1513-23. [PMID: 22812418 DOI: 10.1021/bc200606s] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.
Collapse
Affiliation(s)
- Raymond P Brinãs
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abdel-Aal ABM, El-Naggar D, Zaman M, Batzloff M, Toth I. Design of fully synthetic, self-adjuvanting vaccine incorporating the tumor-associated carbohydrate Tn antigen and lipoamino acid-based Toll-like receptor 2 ligand. J Med Chem 2012; 55:6968-74. [PMID: 22800462 DOI: 10.1021/jm300822g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Overexpression of certain tumor-associated carbohydrate antigens (TACA) caused by malignant transformation offers promising targets to develop novel antitumor vaccines, provided the ability to break their inherent low immunogenicity and overcome the tolerance of the immune system. We designed, synthesized, and immunologically evaluated a number of fully synthetic new chimeric constructs incorporating a cluster of the most common TACA (known as Tn antigen) covalently attached to T-cell peptide epitopes derived from polio virus and ovalbumin and included a synthetic built-in adjuvant consisting of two 16-carbon lipoamino acids. Vaccine candidates were able to induce significantly strong antibody responses in mice without the need for any additional adjuvant, carrier protein, or special pharmaceutical preparation (e.g., liposomes). Vaccine constructs were assembled either in a linear or in a branched architecture, which demonstrated the intervening effects of the incorporation and arrangement of T-cell epitopes on antibody recognition.
Collapse
Affiliation(s)
- Abu-Baker M Abdel-Aal
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland , QLD 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
27
|
El Kazzouli S, Mignani S, Bousmina M, Majoral JP. Dendrimer therapeutics: covalent and ionic attachments. NEW J CHEM 2012. [DOI: 10.1039/c1nj20459a] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
El Kadib A, Katir N, Bousmina M, Majoral JP. Dendrimer–silica hybrid mesoporous materials. NEW J CHEM 2012. [DOI: 10.1039/c1nj20443b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Katir N, Majoral JP, El Kadib A, Caminade AM, Bousmina M. Molecular and Macromolecular Engineering with Viologens as Building Blocks: Rational Design of Phosphorus-Viologen Dendritic Structures. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Rajakumar P, Anandhan R. Synthesis and In-vitro anti-inflammatory activity of novel glycodendrimers with benzene 1,3,5 carboxamide core and triazole as branching unit. Eur J Med Chem 2011; 46:4687-95. [DOI: 10.1016/j.ejmech.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 12/31/2022]
|
31
|
Platen T, Schüler T, Tremel W, Hoffmann-Röder A. Synthesis and Antibody Binding of Highly Fluorinated Amphiphilic MUC1 Glycopeptide Antigens. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011; 40:2673-703. [PMID: 21286593 DOI: 10.1039/c0cs00097c] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past decade, nanomedicine with its promise of improved therapy and diagnostics has revolutionized conventional health care and medical technology. Dendrimers and dendrimer-based therapeutics are outstanding candidates in this exciting field as more and more biological systems have benefited from these starburst molecules. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumour via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Imaging agents including MRI contrast agents, radionuclide probes, computed tomography contrast agents, and fluorescent dyes are combined with the multifunctional nanomedicine for targeted therapy with simultaneous cancer diagnosis. However, an important question reported with dendrimer-based therapeutics as well as other nanomedicines to date is the long-term viability and biocompatibility of the nanotherapeutics. This critical review focuses on the design of biocompatible dendrimers for cancer diagnosis and therapy. The biocompatibility aspects of dendrimers such as nanotoxicity, long-term circulation, and degradation are discussed. The construction of novel dendrimers with biocompatible components, and the surface modification of commercially available dendrimers by PEGylation, acetylation, glycosylation, and amino acid functionalization have been proposed as available strategies to solve the safety problem of dendrimer-based nanotherapeutics. Also, exciting opportunities and challenges on the development of dendrimer-based nanoplatforms for targeted cancer diagnosis and therapy are reviewed (404 references).
Collapse
Affiliation(s)
- Yiyun Cheng
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | | | | | | |
Collapse
|
33
|
Deniaud D, Julienne K, Gouin SG. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org Biomol Chem 2011; 9:966-79. [DOI: 10.1039/c0ob00389a] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Ein Meisterstück in der Synthese: wohldefinierte, multivalente und multimodale dendritische Architekturen für biomedizinische Anwendungen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003968] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Röglin L, Lempens EHM, Meijer EW. A Synthetic “Tour de Force”: Well‐Defined Multivalent and Multimodal Dendritic Structures for Biomedical Applications. Angew Chem Int Ed Engl 2010; 50:102-12. [DOI: 10.1002/anie.201003968] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lars Röglin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| | - Edith H. M. Lempens
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| | - E. W. Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| |
Collapse
|
36
|
Abstract
MHC class I downregulation is a general mechanism by which tumor cells can escape from T-cell-mediated immunity. This downregulation also represents a serious obstacle to the development of effective antitumor immunotherapy or vaccination. Therefore, successful immunotherapeutic and vaccination protocols should be optimized against tumors with distinct cell surface expression of the MHC class I molecules. Mechanisms leading to protective immunity may vary in different models with respect to the particular tumors (e.g., in their levels of residual expression of the MHC class I molecules on tumor cells or inducibility of MHC class I expression). Notably, both CD8+ cell-mediated immunity and MHC class I-unrestricted mechanisms can take place against MHC class I-deficient tumors. Since MHC class I downregulation is frequently reversible by cytokines and also by the activation of epigenetically silenced genes, an attractive strategy is to elicit specific cell-mediated immunity combined with restoration of MHC class I expression on tumor cells.
Collapse
Affiliation(s)
- Milan Reiniš
- Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4, 142 20, Czech Republic
| |
Collapse
|
37
|
Hoffmann-Röder A, Schoenhentz J, Wagner S, Schmitt E. Perfluoroalkylated amphiphilic MUC1 glycopeptide antigens as tools for cancer immunotherapy. Chem Commun (Camb) 2010; 47:382-4. [PMID: 20830350 DOI: 10.1039/c0cc02250k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of perfluoroalkylated glycopeptide antigens and their specific binding to anti-MUC1 mouse antibodies is reported.
Collapse
Affiliation(s)
- Anja Hoffmann-Röder
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D, -55128 Mainz, Germany.
| | | | | | | |
Collapse
|
38
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
39
|
Voit B, Appelhans D. Glycopolymers of Various Architectures-More than Mimicking Nature. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.201000007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
New-generation biomedical materials: Peptide dendrimers and their application in biomedicine. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0107-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157-73. [PMID: 20109027 DOI: 10.1586/erv.09.160] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considerable success has been made with many peptide antigen formulations, and peptide-based vaccines are emerging as the next generation of prophylactic and remedial immunotherapy. However, finding an optimal platform balancing all of the requirements for an effective, specific and safe immune response remains a major challenge for many infectious and chronic diseases. This review outlines how peptide immunogenicity is influenced by the way in which peptides are presented to the immune system, underscoring the need for multifunctional delivery systems that couple antigen and adjuvant into a single construct. Particular attention is given to the ability of Toll-like receptor agonists to act as adjuvants. A survey of recent approaches to developing peptide antigen delivery systems is given, many of which incorporate Toll-like receptor agonists into the design.
Collapse
Affiliation(s)
- Matthew Black
- University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
42
|
Cazet A, Julien S, Bobowski M, Krzewinski-Recchi MA, Harduin-Lepers A, Groux-Degroote S, Delannoy P. Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 2010; 345:1377-83. [PMID: 20231016 DOI: 10.1016/j.carres.2010.01.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 01/28/2023]
Abstract
Changes in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewis(x) or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of G(D3) synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness.
Collapse
|
43
|
Abstract
From the authors' opinion, this chapter constitutes a modest extension of the seminal and inspiring contribution of Stowell and Lee on neoglycoconjugates published in this series [C. P. Stowell and Y. C. Lee, Adv. Carbohydr. Chem. Biochem., 37 (1980) 225-281]. The outstanding progresses achieved since then in the field of the "glycoside cluster effect" has witnessed considerable creativity in the design and synthetic strategies toward a vast array of novel carbohydrate structures and reflects the dynamic activity in the field even since the recent chapter by the Nicotra group in this series [F. Nicotra, L. Cipolla, F. Peri, B. La Ferla, and C. Radaelli, Adv. Carbohydr. Chem. Biochem., 61 (2007) 353-398]. Beyond the more classical neoglycoproteins and glycopolymers (not covered in this work) a wide range of unprecedented and often artistically beautiful multivalent and monodisperse nanostructures, termed glycodendrimers for the first time in 1993, has been created. This chapter briefly surveys the concept of multivalency involved in carbohydrate-protein interactions. The topic is also discussed in regard to recent steps undertaken in glycobiology toward identification of lead candidates using microarrays and modern analytical tools. A systematic description of glycocluster and glycodendrimer synthesis follows, starting from the simplest architectures and ending in the most complex ones. Presentation of multivalent glycostructures of intermediate size and comprising, calix[n]arene, porphyrin, cyclodextrin, peptide, and carbohydrate scaffolds, has also been intercalated to better appreciate the growing synthetic complexity involved. A subsection describing novel all-carbon-based glycoconjugates such as fullerenes and carbon nanotubes is inserted, followed by a promising strategy involving dendrons self-assembling around metal chelates. The chapter then ends with those glycodendrimers that have been prepared using commercially available dendrimers possessing varied functionalities, or systematically synthesized using either divergent or convergent strategies.
Collapse
|
44
|
Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem Rev 2009; 109:6275-540. [DOI: 10.1021/cr900157q] [Citation(s) in RCA: 923] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brad M. Rosen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Christopher J. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Daniela A. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mohammad R. Imam
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
45
|
Schierholt A, Shaikh HA, Schmidt-Lassen J, Lindhorst TK. Utilizing Staudinger Ligation for the Synthesis of Glycoamino Acid Building Blocks and Other Glycomimetics. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Aguilar RM, Talamantes FJ, Bustamante JJ, Muñoz J, Treviño LR, Martinez AO, Haro LS. MAP dendrimer elicits antibodies for detecting rat and mouse GH-binding proteins. J Pept Sci 2009; 15:78-88. [PMID: 19089805 PMCID: PMC2745905 DOI: 10.1002/psc.1096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/14/2008] [Indexed: 01/08/2023]
Abstract
The membrane-bound rat GH-R and an alternatively spliced isoform, the soluble rat GH-BP, are comprised of identical N-terminal GH-binding domains; however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent MAP dendrimer with four identical branches of a C-terminal peptide sequence of the rat GH-BP (GH-BP(263-279)) was synthesized and used as an immunogen in rabbits. Solid-phase peptide synthesis of four GH-BP(263-279) segments onto a tetravalent Lys(2)-Lys-beta-Ala-OH core peptide was carried out using Fmoc chemistry. The mass of the RP-HPLC-purified synthetic product, 8398 Da, determined by ESI-MS, was identical to expected mass. Three anti-rat GH-BP(263-279) MAP antisera, BETO-8039, BETO-8040, and BETO-8041, at dilutions of 10(-3), recognized both the rat GH-BP(263-279) MAP and recombinant mouse GH-BP with ED(50)s within a range of 5-10 fmol, but did not cross-react with BSA in dot blot analyses. BETO-8041 antisera (10(-3) dilution) recognized GH-BPs of rat serum and liver having M(r)s ranging from 35 to 130 kDa, but did not recognize full-length rat GH-Rs. The antisera also detected recombinant mouse GH-BPs. In summary, the tetravalent rat GH-BP(263-279) MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C-termini of both rat and mouse GH-BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH-BPs.
Collapse
Affiliation(s)
- Roberto M Aguilar
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Several dendrimers possessing multiple copies of peptides and glycopeptides belonging to the MUC1 eicosapeptide tandem repeat sequence have been prepared. Fmoc-strategy solid-phase peptide synthesis was used to construct the peptides and glycopeptides, which were conjugated to suitably functionalized dendrimer cores using the copper-catalyzed azide-alkyne cycloaddition reaction to produce multivalent peptide and glycopeptide dendrimers.
Collapse
|
48
|
Xiang Y, Si J, Zhang Q, Liu Y, Guo H. Homogeneous graft copolymerization and characterization of novel artificial glycoprotein: Chitosan-poly(L-tryptophan) copolymers with secondary structural side chains. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.23211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Carlescu I, Scutaru D, Popa M, Uglea CV. Synthetic sialic-acid-containing polyvalent antiviral inhibitors. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9139-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Martos V, Castreño P, Valero J, de Mendoza J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr Opin Chem Biol 2008; 12:698-706. [DOI: 10.1016/j.cbpa.2008.08.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/18/2008] [Indexed: 11/26/2022]
|