1
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
2
|
Pandey NK, Isas JM, Rawat A, Lee RV, Langen J, Pandey P, Langen R. The 17-residue-long N terminus in huntingtin controls stepwise aggregation in solution and on membranes via different mechanisms. J Biol Chem 2018; 293:2597-2605. [PMID: 29282287 PMCID: PMC5818184 DOI: 10.1074/jbc.m117.813667] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Aggregation of huntingtin protein arising from expanded polyglutamine (polyQ) sequences in the exon-1 region of mutant huntingtin plays a central role in the pathogenesis of Huntington's disease. The huntingtin aggregation pathways are of therapeutic and diagnostic interest, but obtaining critical information from the physiologically relevant htt exon-1 (Httex1) protein has been challenging. Using biophysical techniques and an expression and purification protocol that generates clean, monomeric Httex1, we identified and mapped three distinct aggregation pathways: 1) unseeded in solution; 2) seeded in solution; and 3) membrane-mediated. In solution, aggregation proceeded in a highly stepwise manner, in which the individual domains (N terminus containing 17 amino acids (N17), polyQ, and proline-rich domain (PRD)) become ordered at very different rates. The aggregation was initiated by an early oligomer requiring a pathogenic, expanded Gln length and N17 α-helix formation. In the second phase, β-sheet forms in the polyQ. The slowest step is the final structural maturation of the PRD. This stepwise mechanism could be bypassed by seeding, which potently accelerated aggregation and was a prerequisite for prion-like spreading in vivo Remarkably, membranes could catalyze aggregation even more potently than seeds, in a process that caused significant membrane damage. The N17 governed membrane-mediated aggregation by anchoring Httex1 to the membrane, enhancing local concentration and promoting collision via two-dimensional diffusion. Considering its central roles in solution and in membrane-mediated aggregation, the N17 represents an attractive target for inhibiting multiple pathways. Our approach should help evaluate such inhibitors and identify diagnostic markers for the misfolded forms identified here.
Collapse
Affiliation(s)
- Nitin K Pandey
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - J Mario Isas
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Anoop Rawat
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rachel V Lee
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Jennifer Langen
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Priyatama Pandey
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Ralf Langen
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
3
|
Daldin M, Fodale V, Cariulo C, Azzollini L, Verani M, Martufi P, Spiezia MC, Deguire SM, Cherubini M, Macdonald D, Weiss A, Bresciani A, Vonsattel JPG, Petricca L, Marsh JL, Gines S, Santimone I, Marano M, Lashuel HA, Squitieri F, Caricasole A. Polyglutamine expansion affects huntingtin conformation in multiple Huntington's disease models. Sci Rep 2017; 7:5070. [PMID: 28698602 PMCID: PMC5505970 DOI: 10.1038/s41598-017-05336-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Conformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington’s disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment length. These findings are consistent with the HD mutation affecting structural aspects of the amino-terminal region of the protein, and support the concept that modulating mutant HTT conformation might provide novel therapeutic and diagnostic opportunities. We now report that the same conformational TR-FRET based immunoassay detects polyglutamine- and temperature-dependent changes on the endogenously expressed HTT protein in peripheral tissues and post-mortem HD brain tissue, as well as in tissues from HD animal models. We also find that these temperature- and polyglutamine-dependent conformational changes are sensitive to bona-fide phosphorylation on S13 and S16 within the N17 domain of HTT. These findings provide key clinical and preclinical relevance to the conformational immunoassay, and provide supportive evidence for its application in the development of therapeutics aimed at correcting the conformation of polyglutamine-expanded proteins as well as the pharmacodynamics readouts to monitor their efficacy in preclinical models and in HD patients.
Collapse
Affiliation(s)
- Manuel Daldin
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Valentina Fodale
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Cristina Cariulo
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Lucia Azzollini
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Margherita Verani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Paola Martufi
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Marta Cherubini
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | | | - Andreas Weiss
- IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,Evotec AG, Manfred Eigen Campus, Hamburg, Germany
| | - Alberto Bresciani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Jean-Paul Gerard Vonsattel
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Lara Petricca
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, 92697, USA
| | - Silvia Gines
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Santimone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Marano
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrea Caricasole
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy. .,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.
| |
Collapse
|
4
|
Vieweg S, Ansaloni A, Wang ZM, Warner JB, Lashuel HA. An Intein-based Strategy for the Production of Tag-free Huntingtin Exon 1 Proteins Enables New Insights into the Polyglutamine Dependence of Httex1 Aggregation and Fibril Formation. J Biol Chem 2016; 291:12074-86. [PMID: 27002149 PMCID: PMC4933259 DOI: 10.1074/jbc.m116.713982] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
The first exon of the Huntingtin protein (Httex1) is one of the most actively studied Htt fragments because its overexpression in R6/2 transgenic mice has been shown to recapitulate several key features of Huntington disease. However, the majority of biophysical studies of Httex1 are based on assessing the structure and aggregation of fusion constructs where Httex1 is fused to large proteins, such as glutathione S-transferase, maltose-binding protein, or thioredoxin, or released in solution upon in situ cleavage of these proteins. Herein, we report an intein-based strategy that allows, for the first time, the rapid and efficient production of native tag-free Httex1 with polyQ repeats ranging from 7Q to 49Q. Aggregation studies on these proteins enabled us to identify interesting polyQ-length-dependent effects on Httex1 oligomer and fibril formation that were previously not observed using Httex1 fusion proteins or Httex1 proteins produced by in situ cleavage of fusion proteins. Our studies revealed the inability of Httex1-7Q/15Q to undergo amyloid fibril formation and an inverse correlation between fibril length and polyQ repeat length, suggesting possible polyQ length-dependent differences in the structural properties of the Httex1 aggregates. Altogether, our findings underscore the importance of working with tag-free Httex1 proteins and indicate that model systems based on non-native Httex1 sequences may not accurately reproduce the effect of polyQ repeat length and solution conditions on Httex1 aggregation kinetics and structural properties.
Collapse
Affiliation(s)
- Sophie Vieweg
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Annalisa Ansaloni
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Zhe-Ming Wang
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - John B Warner
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and Qatar Biomedical Research Institute (QBRI), Hamad bin Khalifa University (HBKU), 5825 Doha, Qatar
| |
Collapse
|
5
|
Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. Aggregation behavior of chemically synthesized, full-length huntingtin exon1. Biochemistry 2014; 53:3897-907. [PMID: 24921664 PMCID: PMC4075985 DOI: 10.1021/bi500300c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Repeat
length disease thresholds vary among the 10 expanded polyglutamine
(polyQ) repeat diseases, from about 20 to about 50 glutamine residues.
The unique amino acid sequences flanking the polyQ segment are thought
to contribute to these repeat length thresholds. The specific portions
of the flanking sequences that modulate polyQ properties are not always
clear, however. This ambiguity may be important in Huntington’s
disease (HD), for example, where in vitro studies
of aggregation mechanisms have led to distinctly different mechanistic
models. Most in vitro studies of the aggregation
of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism
have been conducted on inexact molecules that are imprecise either
on the N-terminus (recombinantly produced peptides) or on the C-terminus
(chemically synthesized peptides). In this paper, we investigate the
aggregation properties of chemically synthesized HTT exon1 peptides
that are full-length and complete, containing both normal and expanded
polyQ repeat lengths, and compare the results directly to previously
investigated molecules containing truncated C-termini. The results
on the full-length peptides are consistent with a two-step aggregation
mechanism originally developed based on studies of the C-terminally
truncated analogues. Thus, we observe relatively rapid formation of
spherical oligomers containing from 100 to 600 HTT exon1 molecules
and intermediate formation of short protofibril-like structures containing
from 500 to 2600 molecules. In contrast to this relatively rapid assembly,
mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal
HTT exon1 aggregates to disappear in vivo after HTT
production is discontinued.
Collapse
Affiliation(s)
- Bankanidhi Sahoo
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
7
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|