1
|
Miller B, Kim S, Cao K, Mehta HH, Thumaty N, Kumagai H, Iida T, McGill C, Pike CJ, Nurmakova K, Levine ZA, Sullivan PM, Yen K, Ertekin‐Taner N, Atzmon G, Barzilai N, Cohen P. Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology. Aging Cell 2024; 23:e14153. [PMID: 38520065 PMCID: PMC11258485 DOI: 10.1111/acel.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Su‐Jeong Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Cao
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hemal H. Mehta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neehar Thumaty
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroshi Kumagai
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Tomomitsu Iida
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cassandra McGill
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kamila Nurmakova
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics)Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Kelvin Yen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gil Atzmon
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Nir Barzilai
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pinchas Cohen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
Salemi M, Ridolfo F, Salluzzo MG, Schillaci FA, Caniglia S, Lanuzza B, Cantone M, Ferri R. Humanin gene expression in subjects with Parkinson's disease. Mol Biol Rep 2023; 50:2943-2949. [PMID: 36626066 DOI: 10.1007/s11033-022-08132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bradykinesia, tremor, rigidity and postural instability are the hallmark of Parkinson's disease (PD). Non-motor symptoms including cognitive, behavioral, and neuropsychiatric changes, sensory and sleep disturbances that may precede the motor symptoms by years. The peculiar pathological features of PD are decreased dopaminergic neurons and dopamine levels in the substantia nigra pars compacta and pontine locus coeruleus. Humanin is produced by a small gene peptide, which is located in the mitochondria genome. Inflammation, oxidative stress, mitochondrial dysfunction and altered transcription have been recognized as causative factors of PD. This evidence has prompted many researchers to focus on studying the functions of DNA and mitochondria. The purpose of the present study was to evaluate Humanin mRNA levels in peripheral blood mononuclear cells (PBMCs) of PD subjects, compared with those in PBMCs of normal control (NC) subjects. METHODS AND RESULTS A total of 220 participants, including 154 PD patients (57 females and 97 males; mean age 71.54 years, SD 7.8) and 66 CN (28 females and 38 males; mean age 70.54 years, SD 9.45) were enrolled for the qRT-PCR analysis. Increased Humanin mRNA levels were found in PD samples, compared to controls. CONCLUSION In conclusion, the present data confirm the tendency of mitochondria to overexpress mRNA in PD, which could be a cellular attempt to reduce apoptotic damage in PD subjects. Humanin might be useful as a marker for a better diagnosis of PD, and we cannot exclude that in the future it might also play a role on prognosis and in the possible therapies for PD.
Collapse
Affiliation(s)
| | - Federico Ridolfo
- UOC of Clinical Pathology, ASUR Marche -AV4, Hospital of Fermo, Fermo, Italy
| | | | | | | | | | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G.Rodolico-San Marco", Catania, Italy
| | | |
Collapse
|
4
|
Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, Yen K, Cohen P. Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res 2020; 393:112056. [PMID: 32387288 PMCID: PMC7778388 DOI: 10.1016/j.yexcr.2020.112056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins that modify cell metabolism. The the eight MDPs that been characterized (e.g., humanin, MOTS-c, SHLPs1-6) attenuate disease pathology including Alzheimer's disease, prostate cancer, macular degeneration, cardiovascular disease, and diabetes. The association between disease and human genetic variation in MDPs is underexplored, although two polymorphisms in humanin and MOTS-c associate with cognitive decline and diabetes, respectively, suggesting a precise role for MDPs in disease-modification. There could be hundreds of additional MDPs that have yet to be discovered. Altogether, MDPs could explain unanswered biological and metabolic questions and are part of a growing field of novel microproteins encoded by small open reading frames. In this review, the current state of MDPs are summarized with an emphasis on biological and therapeutic implications.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wang Xiang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jiali Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Romeo M, Stravalaci M, Beeg M, Rossi A, Fiordaliso F, Corbelli A, Salmona M, Gobbi M, Cagnotto A, Diomede L. Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity. J Alzheimers Dis 2017; 57:857-871. [PMID: 28282805 DOI: 10.3233/jad-160951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 24-residue peptide humanin (HN) has been proposed as a peptide-based inhibitor able to interact directly with amyloid-β (Aβ) oligomers and interfere with the formation and/or biological properties of toxic Aβ species. When administered exogenously, HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aβ-induced toxicity. Whether these peptides interact directly with Aβ, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aβ42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aβ toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aβ42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aβ42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aβ levels, likely the consequence of the HNG-induced overexpression of the Aβ-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.
Collapse
Affiliation(s)
- Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Unit of Bio-imaging, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Unit of Bio-imaging, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
6
|
Gao G, Fan H, Zhang X, Zhang F, Wu H, Qi F, Zhao L, Li Y. Neuroprotective effect of G14-humanin on global cerebral ischemia/reperfusion by activation of SOCS3 – STAT3 – MCL–1 signal transduction pathway in rats. Neurol Res 2017; 39:895-903. [PMID: 28720038 DOI: 10.1080/01616412.2017.1352187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guangsheng Gao
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Huaihai Fan
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Xiaoying Zhang
- Department of Neonatology, Taian City Central Hospital, Taian, P.R. China
| | - Fusen Zhang
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Haiyan Wu
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Feng Qi
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Lei Zhao
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Yun Li
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
7
|
Xiao J, Kim SJ, Cohen P, Yen K. Humanin: Functional Interfaces with IGF-I. Growth Horm IGF Res 2016; 29:21-27. [PMID: 27082450 PMCID: PMC4961574 DOI: 10.1016/j.ghir.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023]
Abstract
Humanin is the first newly discovered peptide encoded in the mitochondrial genome in over three decades. It is the first member of a novel class of mitochondrial derived peptides. This small, 24 amino acid peptide was initially discovered to have neuroprotective effects and subsequent experiments have shown that it is beneficial in a diverse number of disease models including stroke, cardiovascular disease, and cancer. Over a decade ago, our lab found that humanin bound IGFBP-3 and more recent studies have found it to decrease circulating IGF-I levels. In turn, IGF-I also seems to regulate humanin levels and in this review, we cover the known interaction between humanin and IGF-I. Although the exact mechanism for how humanin and IGF-I regulate each other still needs to be elucidated, it is clear that humanin is a new player in IGF-I signaling.
Collapse
Affiliation(s)
- J Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - S-J Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - P Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - K Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
Solution NMR structure and inhibitory effect against amyloid-β fibrillation of Humanin containing a d-isomerized serine residue. Biochem Biophys Res Commun 2016; 477:647-653. [PMID: 27349871 DOI: 10.1016/j.bbrc.2016.06.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022]
Abstract
Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from l to d form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin d-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-β and remarkably higher binding affinity for amyloid-β than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin d-Ser14 by nuclear magnetic resonance (NMR) and showed that d-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-β-binding site on Humanin d-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure-function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-β fibrillation activity of Humanin caused by d-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin.
Collapse
|
9
|
Xie B, Li X, Dong XY, Sun Y. Insight into the inhibition effect of acidulated serum albumin on amyloid β-protein fibrillogenesis and cytotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9789-9796. [PMID: 25083748 DOI: 10.1021/la5025197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, and aggregation of amyloid β-proteins (Aβ) into soluble oligomers and fibrils has been implicated in the pathogenesis of AD. Herein we developed acidulated serum albumin for the inhibition of Aβ42 fibrillogenesis. Bovine serum albumin (BSA) was modified with diglycolic anhydride, leading to the coupling of 14.5 more negative charges (carboxyl groups) on average on each protein surface. The acidulated BSA (A-BSA) was characterized and confirmed to keep the tertiary structure and stability of BSA. Extensive biophysical and biological analyses showed that A-BSA significantly inhibited Aβ42 fibrillogenesis and mitigated amyloid cytotoxicity. As compared to the Aβ42-treated group (cell viability, 50%), the cell viability increased to 88% by the addition of equimolar A-BSA. The inhibitory effect was remarkably higher than that of BSA at the same concentration. On the basis of the experimental findings, a mechanistic model was proposed. The model considers that Aβ42 is bound to the A-BSA surface by hydrophobic interactions, but the widely distributed negative charges on the A-BSA surface give rise to electrostatic repulsions to the bound Aβ42 that is also negatively charged. The two well-balanced opposite forces make Aβ42 adopt extended conformations instead of the β-sheet structure that is necessary for the on-pathway fibrillogenesis, even when the protein is released off the surface. Thus, A-BSA greatly slows down the fibrillation and changes the fibrillogenesis pathway, leading to the formation of less toxic aggregates. The findings and the mechanistic model offer new insights into the development of more potent inhibitors of Aβ fibrillogenesis and cytotoxicity.
Collapse
Affiliation(s)
- Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | | | | | | |
Collapse
|
10
|
Protective effects of Humanin and calmodulin-like skin protein in Alzheimer's disease and broad range of abnormalities. Mol Neurobiol 2014; 51:1232-9. [PMID: 24969584 DOI: 10.1007/s12035-014-8799-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
Humanin is a 24-amino acid, secreted bioactive peptide that prevents various types of cell death and improves some types of cell dysfunction. Humanin inhibits neuronal cell death that is caused by a familial Alzheimer's disease (AD)-linked gene via binding to the heterotrimeric Humanin receptor (htHNR). This suggests that Humanin may play a protective role in AD-related pathogenesis. Calmodulin-like skin protein (CLSP) has recently been identified as a physiological agonist of htHNR with 10(5)-fold more potent anti-cell death activity than Humanin. Humanin has also shown to have protective effects against some metabolic disorders. In this review, the broad range of functions of Humanin and the functions of CLSP that have been characterized thus far are summarized.
Collapse
|
11
|
Gong Z, Tas E, Muzumdar R. Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne) 2014; 5:210. [PMID: 25538685 PMCID: PMC4255622 DOI: 10.3389/fendo.2014.00210] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/22/2014] [Indexed: 12/16/2022] Open
Abstract
Humanin (HN) is 24-amino acid mitochondria-associated peptide. Since its initial discovery over a decade ago, a role for HN has been reported in many biological processes such as apoptosis, cell survival, substrate metabolism, inflammatory response, and response to stressors such as oxidative stress, ischemia, and starvation. HN and its potent analogs have been shown to have beneficial effects in many age-related diseases including Alzheimer's disease, stroke, diabetes, myocardial ischemia and reperfusion, atherosclerosis, amyotrophic lateral sclerosis, and certain types of cancer both in vitro and in vivo. More recently, an association between HN levels, growth hormone/insulin-like growth factor-1 (GH/IGF axis), and life span was demonstrated using various mouse models with mutations in the GH/IGF axis. The goal of this review is to summarize the current understanding of the role of HN in aging and age-related diseases.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Pediatric Endocrinology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Emir Tas
- Department of Pediatrics, Division of Pediatric Endocrinology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Pediatric Endocrinology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- *Correspondence: Radhika Muzumdar, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA e-mail:
| |
Collapse
|
12
|
Abstract
Snapshot of key developments in the patent literature accompanied by explanatory synopses
Collapse
|