1
|
Luan X, Hu H, Sun Z, He P, Zhu D, Xu Y, Liu B, Wei G. Assembling Ag 2S quantum dots onto peptide nanosheet as a biomimetic two-dimensional nanoplatform for synergistic near infrared-II fluorescent imaging and photothermal therapy of tumor. J Colloid Interface Sci 2024; 663:111-122. [PMID: 38394816 DOI: 10.1016/j.jcis.2024.02.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fluorescent bioimaging and photothermal therapy (PTT) techniques have potential significance in cancer diagnosis and treatment and have been widely applied in biomedical and practical clinical trials. This study proposes the molecular design and biofabrication of a two-dimensional (2D) nanoplatform, exhibiting promising prospects for synergistic bioimaging and PTT of tumors. First, biocompatible 2D peptide nanosheets (PNSs) were designed and prepared through peptide self-assembly. These served as a support matrix for assembling polyethylene glycol-modified Ag2S quantum dots (PEG-Ag2SQDs) to form a 2D nanoplatform (PNS/PEG-Ag2SQDs) with unique fluorescent and photothermal properties. The designed 2D nanoplatform not only showed improved photothermal efficacy and an elevated photothermal conversion efficiency of 52.46 %, but also demonstrated significant lethality against tumors in both in vitro and in vivo cases. Additionally, it displays excellent imaging effects in the near-infrared II region, making it suitable for synergistic fluorescent imaging-guided PTT of tumors. This study not only provides a facile approach for devising and synthesizing 2D peptide assemblies but also presents new biomimetic strategies to create functional 2D organic/inorganic nanoplatforms for biomedical applications.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Huiqiang Hu
- The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Zhengang Sun
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, China
| | - Peng He
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Danzhu Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Youyin Xu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bin Liu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Weerakkody JS, El Kazzy M, Jacquier E, Elchinger PH, Mathey R, Ling WL, Herrier C, Livache T, Buhot A, Hou Y. Surfactant-like Peptide Self-Assembled into Hybrid Nanostructures for Electronic Nose Applications. ACS NANO 2022; 16:4444-4457. [PMID: 35174710 DOI: 10.1021/acsnano.1c10734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification. In this work, a designer surfactant-like peptide sequence, CG7-NH2, is used to fabricate morphologically and physicochemically heterogeneous "biohybrid" surfaces on Au-covered chips. These multistructural sensing surfaces, containing immobilized hierarchical nanostructures surrounded by self-assembled monolayers, are used for the detection and discrimination of VOCs. Through a simple and judicious design process, involving changes in pH and water content of peptide solutions, a five-element biohybrid sensor array coupled with a gas-phase surface plasmon resonance imaging system is shown to achieve sufficient discriminatory capabilities for four VOCs. Moreover, the limit of detection of the multiarray system is bench-marked at <1 and 6 ppbv for hexanoic acid and phenol (esophago-gastric biomarkers), respectively. Finally, the humidity effects are characterized, identifying the dissociation rate constant as a robust descriptor for classification, further exemplifying their efficacy as biomaterials in the field of artificial olfaction.
Collapse
Affiliation(s)
- Jonathan S Weerakkody
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Marielle El Kazzy
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Elise Jacquier
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Pierre-Henri Elchinger
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Raphael Mathey
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Wai Li Ling
- Université Grenoble Alpes, CEA, CNRS, IRIG, IBS, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Cyril Herrier
- Aryballe, 7 Rue des Arts et Métiers, Grenoble 38000, France
| | | | - Arnaud Buhot
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
3
|
Ccorahua R, Noguchi H, Hayamizu Y. Cosolvents Restrain Self-Assembly of a Fibroin-Like Peptide on Graphite. J Phys Chem B 2021; 125:10893-10899. [PMID: 34559528 DOI: 10.1021/acs.jpcb.1c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable self-assembly of peptides on solid surfaces has been investigated for establishing functional bio/solid interfaces. In this work, we study the influence of organic solvents on the self-assembly of a fibroin-like peptide on a graphite surface. The peptide has been designed by mimicking fibroin proteins to have strong hydrogen bonds among peptides enabling their self-assembly. We have employed cosolvents of water and organic solvents with a wide range of dielectric constants to control peptide self-assembly on the surface. Atomic force microscopy has revealed that the peptides self-assemble into highly ordered monolayer-thick linear structures on graphite after incubation in pure water, where the coverage of peptides on the surface is more than 85%. When methanol is mixed, the peptide coverage becomes zero at a threshold concentration of 30% methanol on graphite and 25% methanol on MoS2. The threshold concentration in ethanol, isopropanol, dimethyl sulfoxide, and acetone varies depending on the dielectric constant with restraining self-assembly of the peptides, and particularly low dielectric-constant protic solvents prevent the peptide self-assembly significantly. The observed phenomena are explained by competitive surface adsorption of the organic solvents and peptides and the solvation effect of the peptide assembly.
Collapse
Affiliation(s)
- Robert Ccorahua
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hironaga Noguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Chen Y, Qiu F, Tang C, Xing Z, Zhao X. Controllable self-patterning behaviours of flexible self-assembling peptide nanofibers. NANOSCALE ADVANCES 2021; 3:1603-1611. [PMID: 36132572 PMCID: PMC9419878 DOI: 10.1039/d0na00892c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023]
Abstract
Extremely long flexible self-assembling peptide nanofibers can be manipulated to form various two-dimensional patterns.
Collapse
Affiliation(s)
- Yongzhu Chen
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Zhihua Xing
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| |
Collapse
|
5
|
Chen Y, Peng F, Su T, Yang H, Qiu F. Direct Identification of Amyloid Peptide Fragments in Human α-Synuclein Based on Consecutive Hydrophobic Amino Acids. ACS OMEGA 2020; 5:11677-11686. [PMID: 32478258 PMCID: PMC7254785 DOI: 10.1021/acsomega.0c00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
![]()
Formation of amyloid fibrils by misfolding
α-synuclein is
a characteristic feature of Parkinson’s disease, but the exact
molecular mechanism of this process has long been an unresolved mystery.
Identification of critical amyloid peptide fragments from α-synuclein
may hold the key to decipher this mystery. Focusing on consecutive
hydrophobic amino acids (CHAA) in the protein sequence, in this study
we proposed a sequence-based strategy for direct identification of
amyloid peptide fragments in α-synuclein. We picked out three
CHAA fragments (two hexapeptides and one tetrapeptide) from α-synuclein
and studied their amyloidogenic property. The thioflavin-T binding
test, transmission electron microscopy, Congo red staining, and Fourier
transform infrared spectroscopy revealed that although only hexapeptides
could undergo amyloid aggregation on their own, extended peptide fragments
based on any of the three peptides could form typical amyloid fibrils.
Primary amyloidogenic fragments based on the three peptides showed
synergetic aggregation behavior and could accelerate the aggregation
of full-length α-synuclein. It was proved that hydrophobic interaction
played a predominant role for the aggregation of these peptides and
full-length α-synuclein. A central alanine-to-lysine substitution
in each hydrophobic fragment completely eliminated the peptides’
amyloidogenic property, and alanine-to-lysine substitutions at corresponding
sites in full-length α-synuclein also decreased the protein’s
amyloidogenic potency. These findings suggested that CHAA fragments
were potentially amyloidogenic and played an important role for the
aggregation of α-synuclein. The identification of these fragments
might provide helpful information for eventually clarifying the molecular
mechanism of α-synuclein aggregation. On the other hand, our
study suggested that the CHAA fragment might be a simple motif for
direct sequence-based identification of amyloid peptides.
Collapse
Affiliation(s)
- Yongzhu Chen
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Jia L, Zhang J, Liu S, Chen S, Zhu J. Visible sensing of conformational transition in model silk peptides based on a gold nanoparticles indicator. RSC Adv 2019; 9:40924-40932. [PMID: 35540090 PMCID: PMC9076423 DOI: 10.1039/c9ra05842g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
To understand protein structural transition and β-sheet formation is of importance in disparate areas such as silk protein processing and disease related β-amyloid behavior. Herein, GAGSGAGAGSGAGY (GY-14), a tetradecapeptide based on the crystallizable sequence of silk fibroin, was employed as a model peptide of the crystalline regions of silk fibroin. Due to the incorporation of tyrosine (Y), GY-14 was able to reduce Au3+ to Au NPs and further stabilize them without any external reducing or capping reagents to produce GY-14 stabilized Au NPs (GY-14@Au NPs). The in situ prepared GY-14@Au NPs were utilized as a built-in colorimetric indicator. The influences of specified physiological factors including decreasing the pH, the addition of calcium ions and isopropanol treatment on the self-assembly behavior of GY-14@Au NPs in aqueous solution have been studied. On the basis of transmission electron microscopy (TEM), dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) measurements, the color changes and the UV-Vis absorption peak shift of GY-14@Au NPs were attributed to the conformational change of the GY-14 peptide. The colorimetric readout can be seen with the naked eye, providing an efficient indicator to study the conformational changes of peptides exposed to various environmental stimuli.
Collapse
Affiliation(s)
- Lan Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Material Science and Engineering, Taiyuan University of TechnologyTaiyuan030024P. R. China
| | - Jiabing Zhang
- Department Pharmacy and Machinery, China Railway 12 Bureau Group Central HospitalTaiyuan030024P. R. China
| | - Sumei Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Material Science and Engineering, Taiyuan University of TechnologyTaiyuan030024P. R. China
| | - Song Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Material Science and Engineering, Taiyuan University of TechnologyTaiyuan030024P. R. China
| | - Jingxin Zhu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Material Science and Engineering, Taiyuan University of TechnologyTaiyuan030024P. R. China
| |
Collapse
|
7
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
8
|
Qiu F, Tang C, Chen Y. Amyloid-like aggregation of designer bolaamphiphilic peptides: Effect of hydrophobic section and hydrophilic heads. J Pept Sci 2017; 24. [PMID: 29239498 DOI: 10.1002/psc.3062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023]
Abstract
Amyloid-like aggregation of natural proteins or polypeptides is an important process involved in many human diseases as well as some normal biological functions. Plenty of works have been done on this ubiquitous phenomenon, but the molecular mechanism of amyloid-like aggregation has not been fully understood yet. In this study, we showed that a series of designer bolaamphiphilic peptides could undergo amyloid-like aggregation even though they didn't possess typical β-sheet secondary structure. Through systematic amino acid substitution, we found that for the self-assembling ability, the number and species of amino acid in hydrophobic section could be variable as long as enough hydrophobic interaction is provided, while different polar amino acids as the hydrophilic heads could change the self-assembling nanostructures with their aggregating behaviors affected by pH value change. Based on these results, novel self-assembling models and aggregating mechanisms were proposed, which might provide new insight into the molecular basis of amyloid-like aggregation.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengkang Tang
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongzhu Chen
- Periodical Press of West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Cox H, Georgiades P, Xu H, Waigh TA, Lu JR. Self-Assembly of Mesoscopic Peptide Surfactant Fibrils Investigated by STORM Super-Resolution Fluorescence Microscopy. Biomacromolecules 2017; 18:3481-3491. [PMID: 28570040 DOI: 10.1021/acs.biomac.7b00465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Hai Xu
- Centre
for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266555, China
| | | | | |
Collapse
|