1
|
Hu J, Jiang W, Zuo J, Shi D, Chen X, Yang X, Zhang W, Ma L, Liu Z, Xing Q. Structural basis of bacterial effector protein azurin targeting tumor suppressor p53 and inhibiting its ubiquitination. Commun Biol 2023; 6:59. [PMID: 36650277 PMCID: PMC9845241 DOI: 10.1038/s42003-023-04458-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tumor suppressor p53 prevents tumorigenesis by promoting cell cycle arrest and apoptosis through transcriptional regulation. Dysfunction of p53 occurs frequently in human cancers. Thus, p53 becomes one of the most promising targets for anticancer treatment. A bacterial effector protein azurin triggers tumor suppression by stabilizing p53 and elevating its basal level. However, the structural and mechanistic basis of azurin-mediated tumor suppression remains elusive. Here we report the atomic details of azurin-mediated p53 stabilization by combining X-ray crystallography with nuclear magnetic resonance. Structural and mutagenic analysis reveals that the p28 region of azurin, which corresponds to a therapeutic peptide, significantly contributes to p53 binding. This binding stabilizes p53 by disrupting COP1-mediated p53 ubiquitination and degradation. Using the structure-based design, we obtain several affinity-enhancing mutants that enable amplifying the effect of azurin-induced apoptosis. Our findings highlight how the structure of the azurin-p53 complex can be leveraged to design azurin derivatives for cancer therapy.
Collapse
Affiliation(s)
- Jianjian Hu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenxue Jiang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Jiaqi Zuo
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dujuan Shi
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Xiaoqi Chen
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Xiao Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Wenhui Zhang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lixin Ma
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Zhu Liu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Qiong Xing
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074 China
| |
Collapse
|
2
|
Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022; 14:cancers14225546. [PMID: 36428639 PMCID: PMC9688740 DOI: 10.3390/cancers14225546] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-Penetrating Peptides (CPPs) are short peptides consisting of <30 amino acids. Their ability to translocate through the cell membrane while carrying large cargo biomolecules has been the topic of pre-clinical and clinical trials. The ability to deliver cargo complexes through membranes yields potential for therapeutics and diagnostics for diseases such as cancer. Upon cellular entry, some CPPs have the ability to target specific organelles. CPP-based intracellular targeting strategies hold tremendous potential as they can improve efficacy and reduce toxicities and side effects. Further, recent clinical trials show a significant potential for future CPP-based cancer treatment. In this review, we summarize recent advances in CPPs based on systematic searches in PubMed, Embase, Web of Science, and Scopus databases until 30 September 2022. We highlight targeted delivery and explore the potential uses for CPPs as diagnostics, drug delivery, and intrinsic anti-cancer agents.
Collapse
Affiliation(s)
- Ryan A. Bottens
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
- Richard & Loan Hill Department of Biomedical Engineering, College of Medicine and Engineering, University of Illinois, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
3
|
Naffouje SA, Goto M, Coward LU, Gorman GS, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Nontoxic Tumor-Targeting Optical Agents for Intraoperative Breast Tumor Imaging. J Med Chem 2022; 65:7371-7379. [PMID: 35544687 DOI: 10.1021/acs.jmedchem.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precise identification of the tumor margins during breast-conserving surgery (BCS) remains a challenge given the lack of visual discrepancy between malignant and surrounding normal tissues. Therefore, we developed a fluorescent imaging agent, ICG-p28, for intraoperative imaging guidance to better aid surgeons in achieving negative margins in BCS. Here, we determined the pharmacokinetics (PK), biodistribution, and preclinical toxicity of ICG-p28. The PK and biodistribution of ICG-p28 indicated rapid tissue uptake and localization at tumor lesions. There were no dose-related effect and no significant toxicity in any of the breast cancer and normal cell lines tested. Furthermore, ICG-p28 was evaluated in clinically relevant settings with transgenic mice that spontaneously developed invasive mammary tumors. Intraoperative imaging with ICG-p28 showed a significant reduction in the tumor recurrence rate. This simple, nontoxic, and cost-effective method can offer a new approach that enables surgeons to intraoperatively identify tumor margins and potentially improves overall outcomes by reducing recurrence rates.
Collapse
Affiliation(s)
- Samer A Naffouje
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Masahide Goto
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Lori U Coward
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Gregory S Gorman
- McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama 35229, United States
| | - Konstantin Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Jing Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, Urbana, Illinois 60612, United States
| | - Albert Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Anne Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tapas K Das Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois 60612, United States.,Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Medicine and Engineering, Chicago, Illinois 60607, United States
| |
Collapse
|