1
|
Bąchor U, Lizak A, Bąchor R, Mączyński M. 5-Amino-3-methyl-Isoxazole-4-carboxylic Acid as a Novel Unnatural Amino Acid in the Solid Phase Synthesis of α/β-Mixed Peptides. Molecules 2022; 27:molecules27175612. [PMID: 36080386 PMCID: PMC9457529 DOI: 10.3390/molecules27175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this β-amino acid in the synthesis of a new class of bioactive peptides.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (U.B.); (R.B.); Tel.: +48-78-406-34 (U.B.); +48-71-375-7218 (R.B.); Fax: +48-71-328-2348 (R.B.)
| | - Agnieszka Lizak
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Remigiusz Bąchor
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
- Correspondence: (U.B.); (R.B.); Tel.: +48-78-406-34 (U.B.); +48-71-375-7218 (R.B.); Fax: +48-71-328-2348 (R.B.)
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Ste Marie EJ, Wehrle RJ, Haupt DJ, Wood NB, van der Vliet A, Previs MJ, Masterson DS, Hondal RJ. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine. Biochemistry 2020; 59:3300-3315. [PMID: 32845139 DOI: 10.1021/acs.biochem.0c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via β-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.
Collapse
Affiliation(s)
- Emma J Ste Marie
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States.,Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Robert J Wehrle
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Daniel J Haupt
- Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Neil B Wood
- Department of Molecular Physiology & Biophysics, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Douglas S Masterson
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States.,Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
3
|
Wehrle RJ, Ste Marie EJ, Hondal RJ, Masterson DS. Synthesis of alpha-methyl selenocysteine and its utilization as a glutathione peroxidase mimic. J Pept Sci 2019; 25:e3173. [PMID: 31074180 DOI: 10.1002/psc.3173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Selenocysteine (Sec) is the 21st amino acid in the genetic code where this amino acid is primarily involved in redox reactions in enzymes because of its high reactivity toward oxygen and related reactive oxygen species. Sec has found wide utility in synthetic peptides, especially as a replacement for cysteine. One limitation of using Sec in synthetic peptides is that it can undergo β-syn elimination reactions after oxidation, rendering the peptide inactive due to loss of selenium. This limitation can be overcome by substituting Cα-H with a methyl group. The resulting Sec derivative is α-methylselenocysteine ((αMe)Sec). Here, we present a new strategy for the synthesis of (αMe)Sec by alkylation of an achiral methyl malonate through the use of a selenium-containing alkylating agent synthesized in the presence of dichloromethane. The seleno-malonate was then subjected to an enzymatic hydrolysis utilizing pig liver esterase followed by a Curtius rearrangement producing a protected derivative of (αMe)Sec that could be used in solid-phase peptide synthesis. We then synthesized two peptides: one containing Sec and the other containing (αMe)Sec, based on the sequence of glutathione peroxidase. This is the first reported incorporation of (αMe)Sec into a peptide as well as the first reported biochemical application of this unique amino acid. The (αMe)Sec-containing peptide had superior stability as it could not undergo β-syn elimination and it also avoided cleavage of the peptide backbone, which we surprisingly found to be the case for the Sec-containing peptide when it was incubated for 96 hours in oxygenated buffer at pH 8.0.
Collapse
Affiliation(s)
- Robert J Wehrle
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS
| | - Emma J Ste Marie
- Department of Biochemistry, University of Vermont, Burlington, VT
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT
| | - Douglas S Masterson
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
4
|
Tansi FL, Filatova MP, Koroev DO, Volpina OM, Lange S, Schumann C, Teichgräber UK, Reissmann S, Hilger I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J Cell Biochem 2018; 120:6528-6541. [DOI: 10.1002/jcb.27943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Dmitri O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | | | | | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH Jena Germany
- Centrum of Molecular Biomedicine, Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| |
Collapse
|
5
|
Cal M, Jaremko M, Jaremko Ł, Stefanowicz P. Solid phase synthesis of peptide hydroxamic acids on poly(ethylene glycol)-based support. J Pept Sci 2012; 19:9-15. [DOI: 10.1002/psc.2466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 10/17/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Cal
- Institute Chemistry; University of Wrocław; 50-383, Joliot-Curie 14; Wrocław; Poland
| | - Mariusz Jaremko
- Institute of Biochemistry and Biophysics; Polish Academy of Sciences; 02-106, Pawińskiego 5a; Warsaw; Poland
| | | | - Piotr Stefanowicz
- Institute Chemistry; University of Wrocław; 50-383, Joliot-Curie 14; Wrocław; Poland
| |
Collapse
|
6
|
|
7
|
Nieto S, Cativiela C, Urriolabeitia EP. 31P NMR spectroscopy and pattern-recognition techniques as tools for the identification and enantiodiscrimination of α-amino acids. NEW J CHEM 2012. [DOI: 10.1039/c2nj20909h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Laufer B, Chatterjee J, Frank AO, Kessler H. Can N-methylated amino acids serve as substitutes for prolines in conformational design of cyclic pentapeptides? J Pept Sci 2009; 15:141-6. [PMID: 18985637 DOI: 10.1002/psc.1076] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The incorporation of proline into cyclic peptides seems to be the most promising way to induce beta-turn structures. Recently, however, it was shown that N-methylated amino acids might be even better suited than proline for introducing turn structures. Another property of proline, the ability to effect cis-peptide bonds, has also been reported for N-methylated amino acids. These findings raise the question if it might be possible to replace a proline by an N-methylated amino acid without altering the desired conformational features. The most important benefit of replacing proline by an N-methylated residue is that one recovers the side-chain functionalities, which could be used for enhancing binding selectivity, or to tune a cyclic peptide concerning its pharmacological properties.Here, we compare cyclic peptides containing one or two prolines or N-methylated alanines and a combination of both with respect to preferred conformations and cis-peptide bonds. In addition, the positions have been investigated where an N-alkylated amino acid has to be incorporated to mimic structural aspects usually introduced by proline residues.
Collapse
Affiliation(s)
- Burkhardt Laufer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747 Germany
| | | | | | | |
Collapse
|
9
|
Stanica RM, Benaki D, Rodis FI, Mikros E, Tsoukatos D, Tselepis A, Tsikaris V. Structure-activity relationships of αIIb313-320 derived peptide inhibitors of human platelet aggregation. J Pept Sci 2008; 14:1195-202. [DOI: 10.1002/psc.1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Papas S, Akoumianaki T, Kalogiros C, Hadjiarapoglou L, Theodoropoulos PA, Tsikaris V. Synthesis and antitumor activity of peptide-paclitaxel conjugates. J Pept Sci 2007; 13:662-71. [PMID: 17787026 DOI: 10.1002/psc.899] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Paclitaxel (Pac) is the most important anticancer drug used mainly in treatment of breast, lung, and ovarian cancer and is being investigated for use as a single agent for treatment of lung cancer, advanced head and neck cancers, and adenocarcinomas of the upper gastrointestinal tract. In this work, we present the synthesis of five 2'-paclitaxel-substituted analogs in which paclitaxel was covalently bound to peptides or as multiple copies to synthetic carriers. Ac-Cys(CH(2)CO-2'-Pac)-Arg-Gly-Asp-Arg-NH(2), Folyl-Cys(CH(2)CO-2'-Pac)-Arg-Gly-Asp-Ser-NH(2), Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](2)-NH(2), Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](3)-NH(2) and Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](4)-NH(2) were synthesized using 2'-halogeno-acetylated paclitaxel derivatives. Paclitaxel conjugates showed greater solubility in water than paclitaxel and inhibited the proliferation of human breast, prostate, and cervical cancer cell lines. Although all synthesized compounds had an antiproliferative activity, the Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](4)-NH(2) derivative showed improved biological activity in comparison with paclitaxel in cervical and prostate human cancer cells.
Collapse
Affiliation(s)
- Serafim Papas
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Záková L, Zyka D, Jezek J, Hanclová I, Sanda M, Brzozowski AM, Jirácek J. The use of Fmoc-Lys(Pac)-OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs. J Pept Sci 2007; 13:334-41. [PMID: 17436342 DOI: 10.1002/psc.847] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we present the detailed synthetic protocol and characterization of Fmoc-Lys(Pac)-OH, its use for the preparation of octapeptides H-Gly-Phe-Tyr-N-MePhe-Thr-Lys(Pac)-Pro-Thr-OH and H-Gly-Phe-Phe-His-Thr-Pro-Lys(Pac)-Thr-OH by solid-phase synthesis, trypsin-catalyzed condensation of these octapeptides with desoctapeptide(B23-B30)-insulin, and penicillin G acylase catalyzed cleavage of phenylacetyl (Pac) group from Nepsilon-amino group of lysine to give novel insulin analogs [TyrB25, N-MePheB26,LysB28,ProB29]-insulin and [HisB26]-insulin. These new analogs display 4 and 78% binding affinity respectively to insulin receptor in rat adipose membranes.
Collapse
Affiliation(s)
- Lenka Záková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Harris KM, Flemer S, Hondal RJ. Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J Pept Sci 2007; 13:81-93. [PMID: 17031870 PMCID: PMC3689433 DOI: 10.1002/psc.795] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/08/2006] [Indexed: 11/05/2022]
Abstract
We present here a simple method for deprotecting p-methoxybenzyl groups and acetamidomethyl groups from the side-chains of cysteine and selenocysteine. This method uses the highly elecrophilic, aromatic disulfides 2,2'-dithiobis(5-nitropyridine) (DTNP) and 2,2'-dithiodipyridine (DTP) dissolved in TFA to effect removal of these heretofore difficult-to-remove protecting groups. The dissolution of these reagents in TFA, in fact, serves to 'activate' them for the deprotection reaction because protonation of the nitrogen atom of the pyridine ring makes the disulfide bond more electrophilic. Thus, these reagents can be added to any standard cleavage cocktail used in peptide synthesis.The p-methoxybenzyl group of selenocysteine is easily removed by DTNP. Only sub-stoichiometric amounts of DTNP are required to cause full removal of the p-methoxybenzyl group, with as little as 0.2 equivalents necessary to effect 70% removal of the protecting group. In order to remove the p-methoxybenzyl group from cysteine, 2 equivalents of DTNP and the addition of thioanisole was required to effect removal. Thioanisole was absolutely required for the reaction in the case of the sulfur-containing amino acids, while it was not required for selenocysteine. The results were consistent with thioanisole acting as a catalyst. The acetamidomethyl group of cysteine could also be removed using DTNP, but required the addition of > 15 equivalents to be effective. DTP was less robust as a deprotection reagent. We also demonstrate that this chemistry can be used in a simultaneous cyclization/deprotection reaction between selenocysteine and cysteine residues protected by p-methoxybenzyl groups to form a selenylsulfide bond, demonstrating future high utility of the deprotection method.
Collapse
Affiliation(s)
- Katharine M. Harris
- Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT 05405
| | - Stevenson Flemer
- Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT 05405
| | - Robert J. Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT 05405
| |
Collapse
|
13
|
Synthetic Approaches to Disulfide-free Circular Bovine Pancreatic Trypsin Inhibitor (c-BPTI) Analogues. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
Modifications of the noun peptide are explored and clarified; a few are condemned.
Collapse
|