1
|
Cha HJ, Lee H, Yeo EJ, Yeo HJ, Choi YJ, Sohn EJ, Kim DW, Park SJ, Lee SH, Lee S, Choi SY. Utilization of an Intracellular Calcium Mobilization Assay for the Screening of Transduced FK506-Binding Proteins. Assay Drug Dev Technol 2021; 19:442-452. [PMID: 34415786 DOI: 10.1089/adt.2021.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.
Collapse
Affiliation(s)
- Hyun Ju Cha
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Hyunjin Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Soo Jung Park
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| |
Collapse
|
2
|
Juvvadi PR, Bobay BG, Gobeil SMC, Cole DC, Venters RA, Heitman J, Spicer LD, Steinbach WJ. FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus. Biochem Biophys Res Commun 2020; 526:48-54. [PMID: 32192767 DOI: 10.1016/j.bbrc.2020.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023]
Abstract
The 12-kDa FK506-binding protein (FKBP12) is the target of the commonly used immunosuppressive drug FK506. The FKBP12-FK506 complex binds to calcineurin and inhibits its activity, leading to immunosuppression and preventing organ transplant rejection. Our recent characterization of crystal structures of FKBP12 proteins in pathogenic fungi revealed the involvement of the 80's loop residue (Pro90) in the active site pocket in self-substrate interaction providing novel evidence on FKBP12 dimerization in vivo. The 40's loop residues have also been shown to be involved in reversible dimerization of FKBP12 in the mammalian and yeast systems. To understand how FKBP12 dimerization affects FK506 binding and influences calcineurin function, we generated Aspergillus fumigatus FKBP12 mutations in the 40's and 50's loop (F37 M/L; W60V). Interestingly, the mutants exhibited variable FK506 susceptibility in vivo indicating differing dimer strengths. In comparison to the 80's loop P90G and V91C mutants, the F37 M/L and W60V mutants exhibited greater FK506 resistance, with the F37M mutation showing complete loss in calcineurin binding in vivo. Molecular dynamics and pulling simulations for each dimeric FKBP12 protein revealed a two-fold increase in dimer strength and significantly higher number of contacts for the F37M, F37L, and W60V mutations, further confirming their varying degree of impact on FK506 binding and calcineurin inhibition in vivo.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, NC, 27710, USA; Department of Biochemistry, Durham, NC, 27710, USA; Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Sophie M C Gobeil
- Department of Biochemistry, Durham, NC, 27710, USA; Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - D Christopher Cole
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ronald A Venters
- Duke University NMR Center, Duke University Medical Center, Durham, NC, 27710, USA; Department of Biochemistry, Durham, NC, 27710, USA; Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leonard D Spicer
- Duke University NMR Center, Duke University Medical Center, Durham, NC, 27710, USA; Department of Biochemistry, Durham, NC, 27710, USA; Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Blayney L, Beck K, MacDonald E, D'Cruz L, Nomikos M, Griffiths J, Thanassoulas A, Nounesis G, Lai FA. ATP interacts with the CPVT mutation-associated central domain of the cardiac ryanodine receptor. Biochim Biophys Acta Gen Subj 2013; 1830:4426-32. [PMID: 23747301 DOI: 10.1016/j.bbagen.2013.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.
Collapse
Affiliation(s)
- Lynda Blayney
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zissimopoulos S, Seifan S, Maxwell C, Williams AJ, Lai FA. Disparities in the association of the ryanodine receptor and the FK506-binding proteins in mammalian heart. J Cell Sci 2012; 125:1759-69. [PMID: 22328519 DOI: 10.1242/jcs.098012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FK506-binding proteins (FKBP12 and FKBP12.6; also known as FKBP1A and FKBP1B, respectively) are accessory subunits of the ryanodine receptor (RyR) Ca(2+) release channel. Aberrant RyR2-FKBP12.6 interactions have been proposed to be the underlying cause of channel dysfunction in acquired and inherited cardiac disease. However, the stoichiometry of the RyR2 association with FKBP12 or FKBP12.6 in mammalian heart is currently unknown. Here, we describe detailed quantitative analysis of cardiac stoichiometry between RyR2 and FKBP12 or FKBP12.6 using immunoblotting and [(3)H]ryanodine-binding assays, revealing striking disparities between four mammalian species. In mouse and pig heart, RyR2 is found complexed with both FKBP12 and FKBP12.6, although the former is the most abundant isoform. In rat heart, RyR2 is predominantly associated with FKBP12.6, whereas in rabbit it is associated with FKBP12 only. Co-immunoprecipitation experiments demonstrate RyR2-specific interaction with both FKBP isoforms in native cardiac tissue. Assuming four FKBP-binding sites per RyR2 tetramer, only a small proportion of available sites are occupied by endogenous FKBP12.6. FKBP interactions with RyR2 are very strong and resistant to drug (FK506, rapamycin and cyclic ADPribose) and redox (H(2)O(2) and diamide) treatment. By contrast, the RyR1-FKBP12 association in skeletal muscle is readily disrupted under oxidative conditions. This is the first study to directly assess association of endogenous FKBP12 and FKBP12.6 with RyR2 in native cardiac tissue. Our results challenge the widespread perception that RyR2 associates exclusively with FKBP12.6 to near saturation, with important implications for the role of the FK506-binding proteins in RyR2 pathophysiology and cardiac disease.
Collapse
Affiliation(s)
- Spyros Zissimopoulos
- Wales Heart Research Institute, Department of Cardiology, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|